
SeasCoASA:
Exploiting a Small Leak in a Great Ship

Kaiyi.Xu (a.k.a md4)
Kai.Zhang (@kingdom017)
LilyTang
Dbappsecurity HAT Lab

About us

❖ Dbappsecurity Co.,Ltd
❖ http://www.dbappsecurity.com/

❖ Security Services and enterprise products

❖ Dbappsecurity HAT lab
❖ Hack any thing

❖ IOT、Pentesting …

http://www.dbappsecurity.com/

Agenda

❖ Introduce to Cisco ASA

❖ Hunt in Cisco ASA

❖ Exploit the vulnerability

❖ How to patch

Cisco ASA
❖ Wiki: “Cisco ASA is one of the most widely used

firewall/VPN solutions for small to medium businesses”

❖ A unified threat management device

❖ Several network security functions

❖ ASA vs IOS

❖ Similar Interface

❖ Different Arch: ASA based on x86-64 （lina）

Cisco ASA

❖ ASA = Lina + Linux
❖ Lina

❖ The main process including most services
(Webvpn, ASDM, SNMP etc.)

❖ 80M+ binary and 900M+ .i64

Cisco ASA

❖ Lina_monitor: daemon process
❖ Check syscalls called in lina
❖ Monitor subprocess forked in lina
❖ Send segment fault signal and reboot the device when

triggered

Cisco ASA

❖ All Traffic are blocked except those generated by Lina.

Known Attacks on ASA

❖ CVE-2016-1287

❖ A heap overflow in IKE Cisco fragmentation by
Exodus Intel rewarded as best server-side bug in the
Pwnie 2016.

❖ CVE-2018-0101

❖ Double Free when handing the host-scan-reply tag in
the Webvpn aggregateAuthEndHandler

Known Attacks on ASA
❖ EPICBANANA

❖ Takes advantage of default Cisco credentials (password: cisco) to
gain root privilege

❖ ASA before 9.0

❖ EXTRABACON

❖ Exploits an overflow vulnerability using the Simple Network
Management Protocol (SNMP)

❖ Knowing the target’s uptime and software version.

❖ ASA before 9.0

Checksec Lina
❖ From asa 9.5.3, all security mechanisms are enabled including PIE, ALSR,

NX.

*Reference from: https://github.com/nccgroup/asafw/tree/1e05a3500c2ad8c9fd77f67fa93cc17d7d4a703c#mitigation-
summary

Checksec Lina

Where is the leak

Lina: webvpn

❖ Web Interface of ASA vpn

❖ AnyConnect Service

Lina: webvpn

❖ Webvpn is written in lua

❖ The lua version is 5.0.2

Lina: webvpn

❖ Lua source code

❖ Lua bytecode

Lina: webvpn

❖ aware_webvpn_content
❖ Load the Lua Source Code

into virtual file system
❖ A huge function

Lina: webvpn

❖ Dump All the Lua Source
Code！

❖ About 130+ lua files
❖ More than 50000 lines

After A long time of auditing …

We Found

❖ Arbitrary File Read in the Virtual File System

❖ Arbitrary Lua Execute with an authenticated user

Arbitrary Lua Execute

Story Starts From Here…

Lua Sandbox

❖ Limited functions

❖ Nopped execute or popen

Lua Sandbox

❖ A key function available： loadstring()

❖ Load and execute the lua bytecode

Lua Opcode Examples
• LOADK: load a variable into stack

• JMP: lua vm pc jump to a new PC

• FORPREP: starts of for loop

• FORLOOP: ends of for loop

Lua Sandbox

❖ 5.0.2 A Old Version of Lua

Lua Bytecode Verifier

❖ Lua used to have a bytecode verifier before lua 5.2 but
abandoned later

❖ Lua 5.0.2 still have a bytecode verifier

Lua Bytecode Verifier

Public Attack against Lua Bytecode Verifier

❖ Opcode `LOADK` index out of bound

Public Attack against Lua Bytecode Verifier

❖ Opcode `LOADK` index out of bound

❖ Not available in 5.0.2

Public Attack against Lua Bytecode Verifier

❖ Opcode `FORLOOP` type confusion

Reference: https://apocrypha.numin.it/talks/lua_bytecode_exploitation.pdf

Public Attack against Lua Bytecode Verifier

❖ Opcode `FORLOOP` type confusion

❖ Not available in 5.0.2

Sadly No Public Exploit Available

Hunting for a new escape…

Lua Bytecode Escape

❖ Opcode `FORPREP`

❖ In pairs with `FORLOOP`  
by default

❖ For compatibility only

Lua Bytecode Escape

❖ Opcode `FORPREP`

❖ Type iAsBx

Lua Bytecode Escape
❖ Opcode `FORPREP`

❖ Awesome ! No check in the verifier !

❖ Arbitrary PC in lua VM

From Arbitrary PC in lua VM

To Arbitrary Code Execution

Exploit the leak

❖ Exploit Lua 5.0.2 ubuntu 16.04 first

❖ Arbitrary Address Read

❖ Arbitrary Address Write

❖ Arbitrary Code Execution

Lua

ByteCode

Arbitrary Address Read

PC Chunk

0x0 PRVE_SIZE SIZE

0x10 PC1 PC2

0x20 PC3 PC4

… … …

0x0 – 0x10: Linux Heap Meta

Constant Chunk

0x0 PRVE_SIZE SIZE

0x10 TYPE1 VALUE1

0x20 TYPE2 VALUE2

… … …

Arbitrary Address Read

❖ How to control some chunks?

❖ Where is our controlled chunks?

❖ Where is current lvm->pc?

Info Leak
A Heap Address

Glibc Heap

❖ Chunk size 0x50 => Fastbin => LIFO (Last In First Out)

Glibc Heap

Heap Fengshui

Arbitrary Address Read

❖ How to control some chunks? DONE

❖ Where is our controlled chunks? DONE

❖ Where is current lvm->pc?

Heap Fengshui again

❖ Constant Chunk

❖ PC Chunk

❖ …

❖ PC Chunk

❖ Constant Chunk

0x0 PRVE_SIZE SIZE

0x10 PC1 PC2

0x20 PC3 PC4

… … …

0x0 PRVE_SIZE SIZE

0x10 TYPE1 VALUE1

0x20 TYPE2 VALUE2

… … …

❖ Size of {} = 0x50

❖ assert constant foo == 4

❖ assert instruct foo == 8 or 9

{} {} {} {}

a = {}
a = nil

F F F F

Collectgarbage()

F FPC CON

LoadString()

Origin

Replaced

Arbitrary Address

Load

Origin

Replaced

Arbitrary Address

Load

LUA_TString PTR

String Length

Arbitrary Address Write

❖ Opcode `SETTABLE`

❖ Set table[index] = value

Arbitrary Address Write
❖ Opcode `SETTABLE`

❖ assert type == LUA_TTABLE

❖ assert metatable valid ptr

❖ assert constant foo == 4

❖ assert instruct foo == 8 or 9

1 TNUMBER 1

2 TNUMBER 0x41414141

3 TSTRING “string”

4 TSTRING “len”

Constant Table

Arbitrary Address Write

1 TNUMBER 1

2 TNUMBER 0x41414141

3 TSTRING “string”

4 TSTRING “len”

Origin

Replaced

1 TNUMBER 1

2 TNUMBER new value

3 TSTRING “string”

4 TSTRING “len”

1 TNUMBER 1

2 TNUMBER new value

3 TSTRING “string”

4 TSTRING “len”

… … …

0x18 metatable addr to modify

… … …

LUA_TTABLE Table PTR

Index
Value

1 TNUMBER 1

2 TNUMBER new value

3 TSTRING “string”

4 TSTRING “len”

Constant Table

o1->tt o2->value

❖ Disadvantage：

❖ 2 bytes will be affected

Arbitrary Code Execute

❖ Ubuntu 16.04 without PIE

❖ Leak the Libc base

❖ Hijack the GOT

Things become different in ASA

Cisco Specific Heap Metadata

❖ 0x0 - 0x10 Linux Heap Metadata

❖ 0x10 - 0x50 Cisco ASA heap Metadata

❖ Luckily, allocator_pc is pointed in ELF (Bypass PIE Later)

0x0 PRVE_SIZE SIZE

0x10 Prev_foot head

0x20 mh_magic mh_len

0x30 mh_refcount mh_unused

0x40 mh_fd_link mh_bk_link

0x50 allocator_pc free_pc

0x60 chunk content

Cisco Specific Heap Metadata
❖ The size of struct LUA_TTABLE({}) change from 0x50 to

0x90

❖ From fastbin to smallbin

❖ Smallbin will be consolidated if previous or next chunk
is freed.

0x0 PRVE_SIZE SIZE

0x10 Prev_foot head

0x20 mh_magic mh_len

0x30 mh_refcount mh_unused

0x40 mh_fd_link mh_bk_link

0x50 allocator_pc free_pc

0x60 chunk content

❖ Thousands of malloc or free will be called in ASA

❖ Make Heap fengshui extremely unstable

❖ Solution:

❖ Heap Spray

❖ Allocate all fengshui continuous in avoid of
consolidation

Bypass Protection mechanisms

❖ Step1. Leak a heap address of LUA_TTABLE `{}`

❖ Step2: Leak the allocator_pc to get an address in ELF

❖ Step3: Leak the GOT of memset and got Libc_base

❖ Step4: Leak the `environ` in Libc_base and got stack
address

Bypass Lina Monitor
❖ system(‘/bin/sh’) is unavailable here.

❖ Lina Monitor will reboot the devices when subprocess
or sensitive syscall is called.

❖ Solution:

❖ Execute the shell as the Lina do

❖ Internal Function `shell_execute`

❖ ROP is necessary

Bypass Network Constrains
❖ Traffic Constrain

❖ Solution:

❖ socks_proxy_init

❖ A out-date function

❖ Still useful to open a
proxy in 1080 port

❖ ROP is necessary
again！

Then how to ROP?
❖ All the thread will return from `pthread_cond_timedwait`

❖ Pre: Already known stack base

❖ Step1: Search in the Stack to find the return address of
`pthread_cond_timedwait`

❖ Step2: Stack Pivot to heap (leave; ret)

How to keep ASA Stable after ROP?

❖ Because the current rsp point to Heap, the Lina will turn
down after shell

❖ Solution :

❖ Save the origin RSP, RIP and RBP

❖ Pivot the stack back

Combine Above ALL

❖ 0x1: Arbitrary address read

❖ 0x2: Arbitrary address write

❖ 0x3: Leak ELF_base, Libc_base and stack base

❖ 0x4: Search in stack for ret of `pthread_cond_timedwait`

❖ 0x5: Put ROP in the Heap

❖ 0x6: Modify rbp=> ROP address

Combine Above ALL

❖ 0x7: Modify ret => leave ret

❖ 0x8: wait any process to trigger (5-10 seconds)

❖ 0x9: Call socks_proxy_init by ROP

❖ 0xA: Call shell_execute by ROP

❖ 0xB: Pivot back from heap to stack

❖ 0xC: ASA keep stable!

DEMO Time

How to patch

❖ Disable loadstring of lua bytecode

Thanks

