
I.MX MEMORYI.MX MEMORY
MADNESSMADNESS

HOW TO DUMP, PARSE, AND ANALYZE I.MX FLASHHOW TO DUMP, PARSE, AND ANALYZE I.MX FLASH

MEMORY CHIPSMEMORY CHIPS

Damien Cauquil | HITB Amsterdam 2019 (🎂🎉)

WHO AM I ?WHO AM I ?

 Head of R&D @ Econocom Digital.Security

 Senior security researcher

 Hardware hacker (or at least pretending)

AGENDAAGENDA

Firmware extraction 101
Meet the i.MX architecture
i.MX flash memory layout
imx-nand-tools FTW
Best practices

FIRMWARE EXTRACTION 101FIRMWARE EXTRACTION 101

WHY DO WE WANT TO EXTRACT AWHY DO WE WANT TO EXTRACT A
DEVICE'S FIRMWARE ?DEVICE'S FIRMWARE ?

Contains filesystems, applications, binary files

May also contain VERY interesting data:
encryption/decryption keys, certificates, passwords

WHY DO WE WANT TO EXTRACT AWHY DO WE WANT TO EXTRACT A
DEVICE'S FIRMWARE ?DEVICE'S FIRMWARE ?

We need to understand everything about a device:

How it has been designed

How it (really) works

Where and how every bit of data is stored

METHOD #1: CLIPPING & READINGMETHOD #1: CLIPPING & READING

METHOD #2: CHIP-OFFMETHOD #2: CHIP-OFF

PROFESSIONAL FLASH PROGRAMMERPROFESSIONAL FLASH PROGRAMMER

NAND DUMP SIZENAND DUMP SIZE

Dump file is greater than 1 GB !

$ ls -alh camera.bin
-rwx------ 1 virtualabs virtualabs 1,1G camera.bin

PAGES, BYTES AND OOBPAGES, BYTES AND OOB

Bytes are stored, erased, and modified in pages

NAND flash chips are not 100% reliable and errors
when storing bits may occur

To avoid this, vendors usually provide more space to
store Error Correction Codes (ECC) in spare-byte
area (OOB)

PAGES, BYTES AND OOBPAGES, BYTES AND OOB

PAGES, BYTES AND OOBPAGES, BYTES AND OOB

REMOVING THE OOB DATAREMOVING THE OOB DATA

import sys

PAGE, OOB = 4096, 224
BLOCK = PAGE + OOB
orig_dump = open(sys.argv[1], 'rb').read()
out_dump = open(sys.argv[2], 'wb')
nblocks = int(len(orig_dump) / BLOCK)
for i in range(nblocks):
 out_dump.write(orig_dump[i*BLOCK:(i+1)*PAGE + OOB])
out_dump.close()
orig_dump.close()

CHECKING OUR DUMP WITH BINWALKCHECKING OUR DUMP WITH BINWALK

$ binwalk ipcam.fw.bin

DECIMAL HEXADECIMAL DESCRIPTION

96188 0x177BC CRC32 polynomial table, [...]
[...]
2490368 0x260000 Squashfs filesystem, [...]
4456448 0x440000 Squashfs filesystem, [...]
5505024 0x540000 Squashfs filesystem, [...]
6684672 0x660000 Squashfs filesystem, [...]
7208960 0x6E0000 JFFS2 filesystem, little endian
7643512 0x74A178 JFFS2 filesystem, little endian

EXTRACTING FILES FROM VARIOUSEXTRACTING FILES FROM VARIOUS
FILESYSTEMSFILESYSTEMS

: compressed filesystem, one

partition/image
: Yet Another Flash FS

: Journalized Flash FS version 2, one
partition/image

: Unsorted Block Image, multiple partitions with
various FS

SquashFS

YAFFS2
JFFS2

UBI

IT'S A DOCUMENTED PROCESSIT'S A DOCUMENTED PROCESS

PenTestPartners just published a blog entry:

http://bit.ly/HITB-PTPFW

AND WE STUMBLED UPON AN I.MX6AND WE STUMBLED UPON AN I.MX6
SYSTEMSYSTEM

HEX ANALYSIS REVEALED WEIRD BYTESHEX ANALYSIS REVEALED WEIRD BYTES

A CRAPPY BYTE BEFORE UBI SIGNATUREA CRAPPY BYTE BEFORE UBI SIGNATURE

SAME 1-BYTE OFFSET IN BINWALKSAME 1-BYTE OFFSET IN BINWALK
OUTPUTOUTPUT

UBI header is not aligned on page size (0x1000)

THAT'S WEIRD 😕THAT'S WEIRD 😕

Quick investigation revealed anomalies

Our dump seems OK, but we still cannot extract
data from it

It must be related to i.MX: maybe a custom storage
mechanism

I.MX ARCHITECTURE ANDI.MX ARCHITECTURE AND
MEMORY LAYOUTMEMORY LAYOUT

I.MX ARCHITECTUREI.MX ARCHITECTURE

Integrated Multimedia Application processors

Popular in automotive and home automation
industries

Provides a lot of features including:

Secure/non-secure RAM
SATA II support
Secure Boot ...

I.MX ARCHITECTUREI.MX ARCHITECTURE

I.MX ARCHITECTUREI.MX ARCHITECTURE

Can boot on various storage devices:
NAND Flash
Parallel NOR Flash
SD card
MMC
SATA HDD

It also embeds a boot ROM (Freescale Inc.)

GENERAL-PURPOSE MULTIMEDIAGENERAL-PURPOSE MULTIMEDIA
INTERFACEINTERFACE

controls how data is read/stored on NAND flash
chips

supports multiple NAND flash chips

uses BCH to perform error control and correction

NAND FLASH STRUCTURENAND FLASH STRUCTURE

(image extracted from i.MX28 reference manual)

HOW IS DATA STORED ?HOW IS DATA STORED ?

Data is split in 512-byte chunks

ECC bits are added at the end of each chunk

Chunks are then grouped and stored in a page
preceeded by one metadata block

Bad block marker byte is swapped with first
metadata byte !

WEIRD BYTE EXPLAINED !WEIRD BYTE EXPLAINED !

FIRMWARE CONFIGURATION BLOCKFIRMWARE CONFIGURATION BLOCK
(FCB)(FCB)

This structure contains all the required information
about how data is stored

It must be present in the first 1MB

Second field of this structure contains "FCB " in
ASCII

FCB SIGNATURE IN HEXDUMPFCB SIGNATURE IN HEXDUMP

FIRMWARE CONFIGURATION BLOCKFIRMWARE CONFIGURATION BLOCK
(FCB)(FCB)

NAND page data size
Block N ECC type
Block N size
Block 0 ECC type
Block 0 size
Number of bytes in metadata of a page
...

FCB SIGNATURE IN HEXDUMPFCB SIGNATURE IN HEXDUMP

Offset +0x3C: number of bytes of metadata block

1-BYTE OFFSET EXPLAINED !1-BYTE OFFSET EXPLAINED !

DISCOVERED BAD BLOCK TABLE (DBBT)DISCOVERED BAD BLOCK TABLE (DBBT)

Provides custom NAND bad block management

Its headers provide information about the number
of bad blocks and impacted pages

ECCECC

(image extracted from i.MX28 reference manual)

ECCECC

Provides a way to dynamically fix errors, if possible

Uses BCH (Bose, Ray-Chaudhuri and Hocquenghem)
error-correcting code

Data bytes may be shi�ed by a number of bits due
to BCH bits

SO, WHAT'S NEXT ?SO, WHAT'S NEXT ?

FROM NAND FLASH DUMP TOFROM NAND FLASH DUMP TO
FILESYSTEMSFILESYSTEMS

RECOVER AND REMAP ALL THE BYTESRECOVER AND REMAP ALL THE BYTES

We first find an FCB structure and parse it to recover
all the critical parameters

Then we remove every metadata and ECC bits
according to this FCB

We use ECC bits to fix errors and save each block in
an output file

IMX NAND TOOLSIMX NAND TOOLS

$ sudo pip install imx-nand-tools

 https://github.com/DigitalSecurity/imx-nand-tools/

FCB PARSINGFCB PARSING

CONVERTING IMAGE TO USEABLE DUMPCONVERTING IMAGE TO USEABLE DUMP

ANALYZING THIS NEW DUMPANALYZING THIS NEW DUMP

UBI OVERVIEWUBI OVERVIEW

UBIREADERUBIREADER

Provides a set of tools to parse, analyze and extract
volumes and files from a UBI container

Open-source and available on Github

Written in Python

Does not support fastboot mode

ACCESSING FILES STORED IN VARIOUSACCESSING FILES STORED IN VARIOUS
IMAGESIMAGES

$ ubireader_extract_files -iw img-xx_vol-iio_0633_0.ubifs
[...]
$ ls ubifs-root/ -al
total 76
drwxr-xr-x 19 virtualabs virtualabs 4096 mai 9 09:40 .
drwxr-xr-x 3 virtualabs virtualabs 4096 mai 9 09:40 ..
drwxr-xr-x 2 virtualabs virtualabs 4096 mai 9 09:40 bin
drwxr-xr-x 2 virtualabs virtualabs 4096 mai 9 09:40 boot
drwxr-xr-x 5 virtualabs virtualabs 4096 mai 9 09:40 Data
[...]
drwxr-xr-x 2 virtualabs virtualabs 4096 mai 9 09:40 tmp
drwxr-xr-x 7 virtualabs virtualabs 4096 mai 9 09:40 usr
drwxr-xr-x 2 virtualabs virtualabs 4096 mai 9 09:40 var

THAT'S A WINTHAT'S A WIN

SECURITY THROUGH OBSCURITYSECURITY THROUGH OBSCURITY

(Image: XKCD #257)

NOT SO OBSCURE AFTERALLNOT SO OBSCURE AFTERALL

Reference manuals describe how i.MX GPMI works
and how data is read/stored on NAND flash memory

Publicly available code on Github provides a better
understanding of critical structures and how things
are implemented

IMX KNOBS GITHUB REPOSITORYIMX KNOBS GITHUB REPOSITORY

IMX UBOOT GITHUB REPOSITORYIMX UBOOT GITHUB REPOSITORY

Y U NO ENCRYPT ?Y U NO ENCRYPT ?

i.MX systems support NAND flash encryption

Most of the systems we have tested so far do not use
encryption (what did you expect ?)

KNOWN VARIANTSKNOWN VARIANTS

Some i.MX dumps we made seemed to use a
different ECC mechanism

Various GPMI drivers mention different versions of
Freescale ROM and variants of FCB structure

The current version of imx-nand-tools worked for all
of our dumps but may fail with yours, so ...

INSTALL, TEST, AND CONTRIBUTE !INSTALL, TEST, AND CONTRIBUTE !

CONCLUSIONCONCLUSION

i.MX system uses a custom NAND flash layout
This layout is documented in various documents
and publicly available code
imx-nand-tools provides a set of tools to handle this
layout and convert dumps into useable images
i.MX systems should use NAND flash encryption
feature to avoid key/password/IP leaks

Contact

THANKS FOR ATTENDING, ANYTHANKS FOR ATTENDING, ANY
QUESTION ?QUESTION ?

 damien.cauquil@digital.security
 @virtualabs

RELATED LINKSRELATED LINKS
PTP firmware extraction tips & tricks:

IMX28 Reference manual:

UBOOT NAND utility:

Freescale Linux driver:

https://www.pentestpartners.com/security-blog/how
firmware-analysis-tools-tips-and-tricks/

https://bootlin.com/~maxime/pub/datasheet/MCIMX2
https://github.com/u-boot/u-

boot/blob/master/tools/mxsboot.c
https://github.com/Freescale/

fslc/tree/4.1-2.0.x-imx/drivers/mtd/nand/gpmi-nand

https://www.pentestpartners.com/security-blog/how-to-do-firmware-analysis-tools-tips-and-tricks/
https://bootlin.com/~maxime/pub/datasheet/MCIMX28RM.pdf
https://github.com/u-boot/u-boot/blob/master/tools/mxsboot.c
https://github.com/Freescale/linux-fslc/tree/4.1-2.0.x-imx/drivers/mtd/nand/gpmi-nand

