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Principles




Quantum principles

1. Small-scale physical objects (atom, molecule, photon, electron, ...)
both behave as particles and as waves during experiments (quantum
duality principle)

2. Main characteristics of these objects (position, spin, polarization, ...)
are not determined, have multiple values according to a probabilistic
distribution (quantum superposition principle / Heisenberg's
uncertainty principle)

3. Further interaction or measurement will collapse this probability
distribution into a single, steady state (quantum decoherence

principle)

4. Consequently, copying a quantum state is not possible (no-cloning
theorem)

= We can still take advantage of the first 3 principles to do powerful
non-classical computations




Qubit representations (1/2)

= Constant qubits 0 and 1 are represented as |0) and |1)
= They form a 2-dimension basis, e.g. |0) = [(1)} and |1) = {(1)]

= An arbitrary qubit g is a linear superposition of the basis states:
lg) = a|0) 4 B|1) = [,OBé] where a € C, g € C

= When q is measured, the real probability that its state is measured as |0} is
laf? so |af* + B> = 1

= Combination of qubits forms a quantum register and can be done using the

tensor product: [10) = |1) ® |0) =

O~ OO

= First qubit of a combination is usually the most significant qubit of the
quantum register




Qubit representations (2/2)

Bloch sphere: a qubit can also be viewed as a unit vector
within a sphere - 3 angles (2 angles and a phase)




Basics of quantum gates

= For thermodynamic reasons, a quantum gate must be reversible

= |t follows that quantum gates have the same number of inputs
and outputs

= A n-qubit quantum gate can be represented by a 2"x2" unitary
matrix

= Applying a quantum gate to a qubit can be computed by
multiplying the qubit vector by the operator matrix on the left

= Combination of quantum gates can be computed using the
matrix product of their operator matrix

= In theory, quantum gates don't use any energy nor give off any
heat
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Simple quantum gates




Pauli-X gate

Pauli-X gate Number of qubits:
1

Symbol:
— X

Description: Quantum equivalent of a NOT gate. Rotates qubit

around the X-axis by I1 radians. X.X = I.

0 1

Operator matrix: X = 10
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Hadamard gate

Hadamard gate Number of qubits: | Symbol:

:

Description: Mixes qubit into an equal superposition of |0) and

1)

Operator matrix: H = - 11

S
=
|

—




Hadamard gate

= The Hadamard gate is a special transform mapping the
qubit-basis states |0) and |1) to two superposition states with
“50/50" weight of the computational basis states |0) and |1):

H.J0) = 210) + L511)

H.JL) = 2]0) — L)

= For this reason, it is widely used for the first step of a quantum
algorithm to work on all possible input values in parallel
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CNOT gate

CNOT gate Number of qubits: | Symbol:

2 &

Description: Controlled NOT gate. First qubit is control qubit,
second is target qubit. Leaves control qubit unchanged and flips
target qubit if control qubit is true. CNOT gates with more than
one control qubit are called Toffoli gates.

Operator matrix: CNOT =

= O O O
O = OO

OO o
o O+~ O




SWAP gate

SWAP gate
2

Number of qubits:

Symbol:

Description: Swaps the 2 input qubits.

Operator matrix: SWAP =

1

0
0
0

0

0
1
0

o O+~ O

= O O o
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Universal gates

A set of quantum gates is called universal if any classical logic
operation can be made with only this set of gates. Examples of
universal sets of gates:

N3

= Hadamard gate, Phase shift gate (with § = % and 6
Controlled NOT gate

) and

= Toffoli gate only
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Challenges




Challenges (1/2)

= Qubits and qubit registers cannot be independently copied in
any way

= In simulation like in reality, number of used qubits must be
limited (qubit reuse wherever possible)

= Qubit registers shifts are costly, moving gates “reading heads”
is somehow easier

= In reality, quantum error codes should be used to avoid partial
decoherence during computation
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Challenges (2/2)

For serious purposes we need:

= A high number of qubits
(about 50 qubits is enough for quantum supremacy)

= A good qubit and gate fidelity (low-error rate)

= Optionally, error correction

High number of qubits is not the most important, most
algorithms are limited by circuit depth (= 20-30 gates) because of
qubit and gate fidelity.
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Quantum computing simulators




Quantum Inspire

{Quantum inspire

Editor Results

Quick Guide v FAQ

Deutsch-Jozsa

Operations

Qubits
Prep_z
Prep_y
Prep_x

PauliX gate

https://www.quantum-inspire.com/

@ Exit
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Quirk
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i L Hadamard Gale 1 d T [ XX
/ Creates simple superpositions
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10) - Maps OFF to ON - OFF. g
9 Gates gy

10 & / As matrix:

Watch outputs cha - —+ (= transforms [0 into V%4/0) + V%4/1)

) transforms |1} into v1£(0) - V¥£[1)
- rement deferred.
As rotation

rotates: 180°

[ around: X +Z
hidden phase: exp(90°i)

http://algassert.com/quirk
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Quantum Circuit Simulator (Android)

zauete .
4
(0.7071067811865476 + 0.0i) * [00>
| 0> 49.999999999999986%
| > (0.0+0.0) * [01> 0.0%

N (0.0+0.0i) * [10> 0.0%

(0.7071067811865476 + 0.0i) * [11>
49.999999999999986%

Design and simulation of a qubit entanglement circuit

https://play.google.com/store/apps/details?id=mert.qcs
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Quantum computing simulators

A longer list:
https://quantiki.org/wiki/list-qc-simulators
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Overview of public quantum cloud
computing services




Public quantum cloud computing services

= Bristol University “Quantum in the Cloud”
(http://www.bristol.ac.uk/physics/research/quantum/
engagement/qcloud/): up to 2-3 qubits

= Alibaba Quantum Computing Cloud Service
(http://quantumcomputer.ac.cn): up to 11 qubits

= |IBM “Q Experience”
(https://www.research.ibm.com/ibm-q/technology/devices/). UP to 14 quitS, 20
qubits for private clients

= Rigetti “Quantum Cloud Services”
(https://www.rigetti.com/qpu): up to 19 qubits, 128 qubits to
come

= D-Wave “Leap” (https://cloud.dwavesys.com/leap/): up to
1000 qubits, adiabatic quantum chip, not universal, mainly for
optimization problems
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Quantum computing &
cryptography




P-Box modeling &
implementation




Modeling permutations and their reverse

Modeling a complex permutation and its reverse requires:

Decomposing the permutation in single (two-elements)
permutations

Implementing it using several SWAP gates

Converting SWAP gates to CNOT gates for practical reasons

Inverting the whole circuit (most gates are their own inverse!)

Simplifying the circuit
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2 ways to reverse a cryptographic
primitive




ways to reverse a cryptographic primitive

Implement a reversible circuit and execute it in the reverse way.
Problems:

= Function is not often reversible, solutions: embed function (add
input bits as output bits and various other simple techniques)

= Ancilla qubits are often numerous
(but efficient if they are in minority)

Grover oracle: implement the primitive in the direct way and
query a Grover oracle (specific quantum-only algorithm) to find
the correct input
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CRC-8 modeling & optimal
implementation




Reverse CRC-8 modeling: the steps

= Naive CRC-8 implementation (moving “reading heads” to shift
qubits) using ancilla qubits

= Simplify if possible
= Compute the CRC-8 truth table

= Use a reversible computation framework to find a (optimum)
circuit
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CRC-8: a nearly naive implementation

A quantum CRC-8 circuit with only CNOT gates

35



revkit: a useful framework for reversible computation

= Interesting framework for reversible & quantum circuits

= Takes various kinds of inputs (truth tables, circuits, boolean
functions)

= Has different synthesis & optimization strategies
= Able to embed non-reversible functions into reversible ones
= Sometimes able to find optimum circuits (if not too big)

* https://msoeken.github.io/revkit.html
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Reverse-CRC-8 optimal implementation (1/2)

Our optimal reverse-CRC-8 circuit instructions
using Quantum Inspire
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Reverse-CRC-8 optimal implementation (2/2)

Optimal circuit visualized using Quantum Inspire
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Reversing a single CRC-8 using quantum computing (1/4)

RCRC-8 without noise

Device: QX single-node simulator
Number of shots: 1024
Calibration: Unknown

Fridge temperature: Unknown

10001110

Quantum simulation without noise using Quantum Inspire
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Reversing a single CRC-8 using quantum computing (2/4)

RCRC-8 with noise

Device: QX single-node simulator Histogram data:
Number of shots: 1024 Raw data:
Calibration: Unknown Observed state:

Fridge temperature: Unknown Measurement register.

0.017 0.023 0,035 0.003 0.002
00001110 00010101 01001110 01010101 10001110 11001110

Quantum simulation with typical noise using Quantum Inspire




Reversing a single CRC-8 using quantum computing (3/4)

def go():
q = QuantumRegister(8, 'q'); b = ClassicalRegister(8, 'b'); qcl = QuantumCircuit(q, b)
qcl.x(q[1]1); qcl.x(ql[3]1); qcl.barrier(q) # Input value
qcl.cx(q[5], ql4]); qcl.cx(ql6], ql51); qcl.cx(ql7], ql4])
qcl.cx(ql[5], ql31); qcl.cx(ql3]1, ql2]); qcl.cx(ql4], ql3]);
qcl.cx(ql[3], ql1]); gcl.cx(ql1]l, ql@]); qcl.cx(ql2], ql1]);
qcl.cx(qlel, ql71); qcl.cx(ql71, ql6]); qcl.cx(qll], q[71)
qcl.barrier(q); qcl.measure(q, b)
job_sim = execute([qcl,], Aer.get_backend('gasm_simulator'))

sim_result = job sim.result(); print("simulation: ",sim result.get counts(qcl))
print("\n(IBMQ Backends)", IBMQ.backends())
try:

#least busy device = least busy(IBMQ.backends(simulator=False))
least busy device = IBMQ.get backend('ibmg 16 melbourne')
print("Running on current least busy device: ", least_busy_device)
# running the job
job exp = execute([qcl,], backend=least busy device, shots=1024)
interval = 10
while job exp.status().name != 'DONE’
print(job_exp.status().name)
time.sleep(interval)
exp_result = job_exp.result()
d=exp_result.get_counts(qcl)
print(sorted([(v,k) for k,v in d.items()], reverse=True))
except valueError:
print("All devices are currently unavailable.")

Reversing a single CRC-8 on real quantum hardware
(program, IBM Q 14 Melbourne)
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Reversing a single CRC-8 using quantum computing (4/4)

go()
simulation: {'10001110': 1624}

(IBMQ Backends) [<IBMQBackend('ibmgqx4') from IBMQ()>, <IBMQBackend('ibmqx5') from IBMQ()>, <IBMQBackend('ibmgx2') f
rom IBMQ()>, <IBMQBackend('ibmq 16 melbourne') from IBMQ()>, <IBMQBackend('ibmq gasm simulator') from IBMQ()>]
Running on current least busy device: ibmq 16 melbourne

INITIALIZING

RUNNING

RUNNING

[(95, '00000000'), (56, '01000011'), (54, '00100000'), (43, '10001110'), (34, '01000010'), (26, '10000110'), (25,
'01100011'), (25, '00001600'), (24, '11000001'), (24, '10000010'), (24, '00000010'), (24, '00000001'), (23, '110011
01'), (23, '00101000'), (20, '01010011'), (20, '01010010'), (19, '11000101'), (18, '11100001'), (18, '11011100'),
(18, '01001011'), (17, '10101110'), (17, '10001010'), (17, '00000011'), (16, '11000000'), (16, '00001010'), (15, 'l
1010000'), (15, '01011111'), (15, '60100001'), (14, '11010001'), (14, '01100010'), (14, '01000111'), (14, '0100000
1'), (14, 'eeelole0'), (14, '00010001'), (14, '00000160'), (13, 'llelllel’'), (13, 'leleeele'), (13, 'leellele'), (1
3, '01001010'), (13, '00011000'), (12, '10010010'), (12, '10000000'), (12, '61101111'), (12, '01010111'), (12, '601
00011'), (11, '11110100'), (11, '11011001'), (11, '11010100'), (11, '01101611'), (11, '00010000'), (10, '1101010
1'), (10, '11001001'), (10, '10110010'), (10, '10011110'), (10, '10010000'), (10, '10001111'), (10, '10001100'), (1
0, '10000111'), (10, '01111111'), (10, '01010000'), (10, '01000000'), (10, '00110001'), (9, '11101100'), (9, ‘11100
1e1'), (9, 'll1leeeee'), (9, 'lleeelee'), (9, 'leleelle‘'), (9, '1e1ee011'), (9, '16011111'), (9, 'l010011'), (9, 'O
1110111'), (9, 'ellleele'), (9, '01601111'), (9, '0l000110'), (9, '6011110'), (9, '60110000'), (8, '11110001'),

Reversing a single CRC-8 on real quantum hardware
(results, IBM Q 14 Melbourne)
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Reversing multiple CRC-8s with fixed and unfixed bits

|o>~{ H & s00%— o —

10} D 500%— O —
0) D o LR
10} D 4 soce Clo) |
|0>~E 7al 4 50.0%— O —
o) D o LA |
10} C 500%— O —
|0)~E b 500%— O —

Quantum simulation & results using Quirk: fixed null bits have been
found in the input for 8 different outputs!
(https://tinyurl.com/rcrc8multi)



https://tinyurl.com/rcrc8multi

AES (Rijndael’s) S-box modeling
& implementation




AES S-Box implementation

Forward S-box [edit]

The S-box maps an 8-bit input, ¢, to an 8-bit output, s = S(c¢). Both the
input and output are interpreted as polynomials over GF(2). First, the
input is mapped to its multiplicative inverse in
GF(28) = GF(Z)[}(]/(}(8 +xt 3+ x+ 1), Rijndael's finite field. Zero,
which has no inverse, is mapped to zero. This transformation is known
EZMthe "Nyberg S-box" after its inventor Kaisa Nyberg.[2 The
multiplicative inverse is then transformed using the following affine
transformation:

S0 1000 1 1 1 1][b 1
5 110001 1 1|k 1
s2 1110001 1|t 0
ss| [t 111000 1flb| 0
4 1111100 0f]by 0
s5 0111110 0ffbs 1
s6 001 1111 0ffbs 1
57 0001111 1]]|b 0

where [s7, ..., 5o] is the S-box output and [b7, ..., bg] is the multiplicative
inverse as a vector.

AES S-Box. The column is determined by the least significant nibble,
and the row by the most significant nibble. For example, the value 8x9a
is converted into 0xb8.
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Reverse AES S-Box implementation

Our reverse AES S-Box circuit
with 281 Pauli-X, CNOT and Toffoli gates
(optimal circuit requires at least 14 gates)
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Reversing XOR encryption using
an oracle




Reversing XOR encryption using an oracle

= |dea: for a given key size, implement a direct XOR encryption
and find the candidate keys by minimizing the bytes MSBs (for
ASCII text encryption)

48



Quantum threats against current
cryptography




Quantum threats against symmetric cryptography

Main threat is Grover algorithm:

= Pure quantum algorithm for searching among N unsorted
values

» Complexity: O(v/N) operations and O(log N) storage place
= Probabilistic, iterating and optimal algorithm

Defense: doubling all symmetric key sizes is enough to be out of
reach from quantum attacks
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Quantum threats against asymmetric cryptography

Main threat is Shor algorithm:

= Pure quantum algorithm for integer factorization that runs in
polynomial time formulated in 1994

= Complexity: O((log N)3) operations and storage place

= Probabilistic algorithm that basically finds the period of the

sequence a¥ mod N and non-trivial square roots of unity

mod N
= Uses QFT, some steps are performed on a classical computer
= Breaks RSA, DSA, ECDSA, ECDLP efficiently

Defense: use a PQC alorithm
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Post-quantum cryptography




Progress in number of qubits (1/2)

qubitcounter.com 0% | - O 77 Recherche

QUBIT COUNTER

2018

128 qubits, Rigetti, US.

2018

72 qubits, Google, US.

2017

50 qubits, IBM, US.

2017

17 qubits, IBM, US.

In @ @
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Progress in number of qubits (2/2)
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Quantum Resistant Cryptography

Currently there are 6 main different approaches:

Lattice-based cryptography

Multivariate cryptography

Hash-based cryptography

Code-based cryptography

Supersingular Elliptic Curve Isogeny cryptography

Symmetric Key Quantum Resistance

Annual event about PQC: PQCrypto conference

(https://twitter.com/pqcryptoconf, 10th edition in 2019)
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Quantum Resistant Cryptography

Very few asymmetric PQ algorithms, the most well-known is NTRU,
a lattice-based shortest vector problem:

= NTRUEncrypt for encryption (1996)
= NTRUSign for digital signature

https://www.onboardsecurity.com/products/ntru-crypto
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Thank you!

Questions?
©nono2357 on Twitter
info@digital.security
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