Writing Metasploit Plugins

from vulnerability to exploit

Saumil Shah

ceo, net-square
Hack In The Box 2006, Kuala Lumpur

who am 1
16:08 up 4:26, 1 user, load averages: 0.28 0.40 0.33

USER TTY FROM LOGIN@ TIDLE WHAT
saumil console - 11:43 0:05 bash

« Saumil Shah - “krafty”

ceo, net-square solutions
saumil@saumil.net

author: “Web Hacking - Attacks and Defense”

© Saumil Shah

From Vulnerability to Exploit

Fuzzing

EIP = 0x41414141

Final Shellcode

Working exploit

Shellcode Handling

Debugger
Attack Vector

Reliable EIP return
address

Bad characters

Test Shellcode
(INT 3)

© Saumil Shah

* Error condition when a larger chunk of data
Is attempted to be written into a smaller
container (local var on the stack).

char buffer[128];
strcpy(buffer, argv[1l]);

* What will happen if “argv[1]” is more than
128 bytes?

© Saumil Shah

» Register dump after a stack overflow:
(gdb) 1info registers

)
ebp
esi
edi
eip

Oxbffffb24
0x41414141
0x4000ae00
Oxbffffb74
0x41414141

-1073743008
1094795585
1073780464
-1073742988
1094795585

EIP’s value is "0x41414141", i.e. "AAAA’

EIP got overwritten with bytes from the
overflowed buffer.

© Saumil Shah

push str
CALL

(push EIP)
push EBP

© Saumil Shah

Top of stack

func1::buffer[128]

frame O - func1()

frame 1 - main()

Bottom of stack
© Saumil Shah

Top of stack

SR AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

Stack frame
for func1
AAAA unci()

ARRAR

Bottom of stack
© Saumil Shah

POP, AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA R -Na RV sl I (01HR1S

\

Top of stack
ESP—»

Bottom of stack

“AAAA

ARARAR

EIP will be popped
EIP = 0x41414141
(“AAAA”)

© Saumil Shah

 After func1() returns, EIP and EBP are
popped off the stack

(gdb) 1info registers

esp Oxbffffa24 -1073743324
ebp 0x41414141 1094795585
esi 0x4000a0e60 1073786464
edi Oxbffffa74 -1073743244
eip 0x41414141 1094795585

* We have control of the instruction pointer.

© Saumil Shah

* Vulnerabilities may lead to EIP control.
* “Where do we want to go.... today?”
« Can we inject our own code, and make EIP

jump to it?
* And, where do we inject our code?

© Saumil Shah

An advanced open-source exploit research
and development framework.

http://metasploit.com

Current stable version: 2.6

* Written in Perl, runs on Unix and Win32 (cygwin)
* 160+ exploits, 77 payloads, 13 encoders

Brand new 3.0 beta2
« Complete rewrite in Ruby

© Saumil Shah

Generate shellcode.
Shellcode encoding.
Shellcode handlers.

Scanning binaries for specific instructions:
« e.g. POP/POP/RET, JMP ESI, etc.

Ability to add custom exploits, shellcode,
encoders.

...and lots more.

© Saumil Shah

How do we determine which 4 bytes go into
EIP?

Use a cyclic pattern as input:

Aa@AalAaZAa3Aa4AaS5AabcAa7Aa8Aa9AbOAb1Ab2Ab3Ab4AbSAbGAb7Ab8ADOACAACL
Ac2Ac3Ac4AcS5AcoAc7Ac8ACOAdOAdIAdZAd3Ad4AdSAdOAd7Ad8Ad9AePAe1AeZ2Ae3
Aed4Ae5Ae6Ae7Ae8AeOATOATIAT2Af3AT4AfSATOAT7AT8AfOAgOAg1Ag2Ag3Ag4AgS
Ag6Ag7Ag8Ag9AnOAh1Ah2Ah3Ah4ANS5

Metasploit's Pex:: Text::PatternOffset()
Generate patterns, find substring.

© Saumil Shah

» Use Metasploit's patternOffset.pl

krafty:~/metasploit$ perl sdk/patternOffset.pl 0x68423768 2000
1012

 Based on what EIP gets overwritten with, we

can find the “distance to EIP” with this
pattern.

’4 1012 bytes >1

Bottom
buffer of stack

AaOAa1Aa2Aa2Aa3

© Saumil Shah

Stack Overflows

* Direct Program Counter overwrite
« Exception Handler overwrite

Format String bugs
Heap Overflows
Integer Overflows

Overwrite pc vs. “what” and “where”

© Saumil Shah

Code assembled in the CPU’s native
Instruction set.

Injected as a part of the buffer that is

overflowed.

Most typical function of the injected code is
to “spawn a shell” - ergo “shellcode”.

A buffer containing shellcode is termed as
“payload”.

© Saumil Shah

Need to know the CPU’s native instruction
set:

* e.g. x86 (ia32), x86-64 (iab4), ppc, sparc, etc.

Tight assembly language.

OS specific system calls.
Shellcode libraries and generators.
Metasploit Framework.

© Saumil Shah

» Easiest way is to pack it in the buffer
overflow data itself.

* Place it somewhere in the payload data.

* Need to figure out where it will reside in the
memory of the target process.

© Saumil Shah

* EIP can be made to:
« Return to Stack
Jump directly into the payload.
(reliability issues - addr jitter, stack protection)

« Return to Shared library
Jump through registers.
Requires certain conditions to be meet.
(highly stable technique)

© Saumil Shah

func1(str)

Oxbffff790 Oxbffff81c
Bottom

buffer[128] of stack

EIP

func1() returns - pop EIP

Oxbffff790 0xbffff7c0

nop nop nod nop hop | Oxbffff7cO | Oxbffff7cO

execute shellcode
OxDbffff7cO

nop nop nod nop hop | Oxbffff7cO Oxbffff7cO

© Saumil Shah

’4 frame O >‘ frame 1....

buffer(]

strcpy(buffer, s)

Bottom
of stack

saved EIP
overwritten

AAA’A‘AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA _mwu.jﬂ
| AAAA AAAA | AAARA/

EBX points within

the buffer (in this
case)

ESP points beyond
the saved EIP

© Saumil Shah

call EBX

Return to a known
location within a DLL

[/.
| nop pdp nop shellcode DLL addr | AAAAAZKA |
- |

EAX

EBX

ECX
EDX

ESP
EBP
ESI
EDI

shellcode at the beginning of the buffer

© Saumil Shah

OO]
AARRRAAAAAAARAARRRIAAAAAAARAARRRANAAAAARA DL addr | ndplngflshellcode
|

EAX ESP

EBX EBP
ECX ESI
EDX ED

shellcode at the end of the buffer

© Saumil Shah

We need to find locations in memory which
contain CALL or JMP instructions, at fixed
addresses.

Shared libraries get loaded at fixed
addresses within the process memory.

|deal for finding CALLs, JMPs.

We can try manual pattern searching with
opcodes, using a debugger...

...or we can use msfpescan or msfelfscan.

© Saumil Shah

Utilities to scan binaries (executables or
shared libraries).

Support for ELF and PE binaries.

Uses metasploit’s built-in disassemblers.

Can find CALLs, JMPs, or POP/POP/RET
Instruction sets.

Can be used to find instruction groups
specified by regular expressions.

© Saumil Shah

* If we need to search for a jump to ESI:

~/framework$./msfpescan -f windl1ls/USER32.DLL -j esi
Ox77ellc46 call esi
Ox77el21b7 call esi
Ox77el121c5 call esi
Ox77el222a call esi

Ox77ebca97 jmp esi

* We can point EIP to any of these values...
e ...and it will then execute a JMP/CALL ESI

© Saumil Shah

* First, search the executing binary itself.
* Independent of Kernel, Service Packs, libs.

« Second, search shared libraries or DLLs

included with the software itself. (e.q.
in_mp3.dll for Winamp)

» Last, search default shared libraries that get
included from the OS:

* e.g. KERNEL32.DLL, libc.so, etc.
* Makes the exploit OS kernel, SP specific.

© Saumil Shah

1000 byte payload.
first 780 bytes can be AAAA's.
Bytes 781-784 shall contain an address

which will go into EIP.
Bytes 785 onwards contain shellcode.

© Saumil Shah

* Types of shellcode:
 Bind shell
« Exec command

* Reverse shell
« Staged shell, etc.

* Advanced techniques:
* Meterpreter

» Uploading and running DLLs “in-process”
. ...etc.

© Saumil Shah

Payload encoders create encoded
shellcode, which meets certain criteria.

e.g. Alpha2 generates resultant shellcode

which is only alphanumeric.

Allows us to bypass any protocol parsing
mechanisms / byte filters.

An extra “decoder” is added to the beginning
of the shellcode.
* Size may increase.

© Saumil Shah

 Example: Alpha2 encoding

original shellcode (ascii 0-255)

* Transforms raw payload into alphanumeric
only shellcode.

* Decoder decodes the payload “in-memory”.

© Saumil Shah

* Metasploit offers many types of encoders.

* Work around protocol parsing
* e.g. avoid CR, LF, NULL

» toupper(), tolower(), etc.

 Defeat IDS

* Polymorphic Shellcode
« Shikata Ga Nali

© Saumil Shah

* Try / catch block

try {
code that may throw

an exception.

attempt to recover from

the exception gracefully.

}

* Pointer to the exception handling code also
saved on the stack, for each code block.

© Saumil Shah

exception handler
code
(catch block)

frame w/ exception

handling
addr of exception handler

MICRICINES

Bottom of stack
© Saumil Shah

 SEH - Structured Exception Handler
* \Windows pops up a dialog box:

Winamp

Winamp has encountered a problem and needs to close.
We are sonry for the inconvenience.

If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an error report that you can send to us. We will treat
this report as confidential and anonymous.

To see what data this error report contains, click here.

Debug | Send Error Report |

» Default handler kicking in.

© Saumil Shah

Default SEH should be the last resort.

Many languages including C++ provide
exception handling coding features.

Compiler generates links and calls to
exception handling code in accordance with

the underlying OS.

In Windows, exception handlers form a
LINKED LIST chain on the stack.

© Saumil Shah

Each SEH record is of 8 bytes

ptr to next SEH record

address of exception handler

These SEH records are found on the stack.

In sequence with the functions being called,
interspersed among function (block) frames.

WInDBG command - lexchain

© Saumil Shah

ex_handler_z()

MSVCRT!exhandler =

ptr to next SEH record

address of exception handler

OXFFFFFFFF «

address of exception handler

© Saumil Shah

Overwrite one of the addresses of the
registered exception handlers...

...and, make the process throw an

exception!

If no custom exception handlers are
registered, overwrite the default SEH.

Might have to travel way down the stack...
...but in doing so, you get a long buffer!

© Saumil Shah

ex_handler()

ptr to next SEH record

address of exception handler

© Saumil Shah

ex_handler()

Overwriting SEH

|

EIP = 0x42424242

EIP = 0x41414141

causes segmentation fault.
OS invokes registered
exception handler in the chain

© Saumil Shah

sipXtapi library - popular open source VolP
library.

Used in many soft phones

* AOL Triton soft phone uses sipXtapi.

24 byte buffer overflow in the CSeq SIP
header.

Too small for any practical shellcode.
We can hack it up by overwriting SEH.

© Saumil Shah

© Saumil Shah

Integration within the Metasploit framework.
Multiple target support.
Dynamic payload selection.

Dynamic payload encoding.
Built-in payload handlers.
Can use advanced payloads.

...a highly portable, flexible and rugged
exploit!

© Saumil Shah

user supplied List of known _
Shellcode
Library
EXPLOIT
preamble

Encoders
me Create payload g
4 launch attack

get connection

Payload
handlers

© Saumil Shah

Perl module (2.6), Ruby module (3.0)

Pre-existing data structures
* %info, %advanced

Constructor
* sub new{...}

Exploit code
* sub Exploit{...}

© Saumil Shah

package Msf::Exploit: :name;
use base “Msf::Exploit”;
use strict;

use Pex::Text;

my $advanced = { };

my $info = { }; information block

sub new {
constructor

1 return an instance of our exploit

sub Exploit {

}

exploit block

© Saumil Shah

Name
Version
Authors

Arch

ON

Priv
UserOpts

Payload
Encoder
Refs
DefaultTarget
Targets

Keys

© Saumil Shah

Perl EXtensions.
<metasploit_home>/lib/Pex.pm
<metasploit_home>/lib/Pex/

Text processing routines.
Socket management routines.
Protocol specific routines.

These and more are available for us to use
In our exploit code.

© Saumil Shah

Encoding and Decoding (e.g. Base64)
Pattern Generation
Random text generation (to defeat IDS)

Padding
...etc

© Saumil Shah

© Saumil Shah

SMB
DCE RPC
SunRPC

MSSQL
...etc

© Saumil Shah

Pex::Utils
Array and hash manipulation
Bit rotates

Read and write files
Format String generator
Create Win32 PE files
Create Javascript arrays
...a whole lot of miscellany!

© Saumil Shah

A skeleton exploit module.
Walk-through.

Can use this skeleton to code up exploit

modules.

Place finished exploit modules in:
<path to metasploit>/exploits/

© Saumil Shah

* my_ peercast.pm
* my_sipxtapi.pm

© Saumil Shah

» msfcli
* Metasploit command line interface.
« Can script up metasploit framework actions in a

non-interactive manner.
* msfpayload
* Generate payload with specific options.

* msfencode
* Encode generated payload.

© Saumil Shah

* msfweb
* Web interface to the Metasploit framework.

 msfupdate

 Live update for the Metasploit framework.

© Saumil Shah

 msfd

* Metasploit daemon, allows for client-server
operation of Metasploit.

* msfopcode

« command line interface to Metasploit's online
opcode database.

* msfwx
« a GUI interface using wxruby.

© Saumil Shah

New payloads, new encoders.
Ruby extension - Rex (similar to Pex)
NASM shell.

Back end Database support.
...whole lot of goodies here and there.

© Saumil Shah

e

- Thank You! % “

Saumil Shah

saumil@saumil.net | http://net-square.com
- +91 98254 31192

