
Subverting Windows 7 x64 Kernel with DMA
attacks

Damien Aumaitre
Christophe Devine

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

Roadmap

1 Physical attacks
School case
Direct Memory Access

2 FPGA on a PCMCIA card

3 Conclusion

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 2/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

Roadmap

1 Physical attacks
School case
Direct Memory Access

2 FPGA on a PCMCIA card

3 Conclusion

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 3/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

School case : 2004, financial fraud

Context

London office of the Sumitomo Mitsui bank

Three criminals : two IT guys, and a guard working at the
bank

How it happened

The guard installs keylogging software on several key PCs

IT guys come, on a week-end night, to obtain the passwords

They initiate money transfers for a total of 242 million EUR

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 4/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

School case : 2004, financial fraud

Why they failed

Entry errors in the money
transfer order made the
operation fail (PEBKAC)

The guard forgot to deactivate
the video-surveillance systems,
didn’t clean up the evidence

End of the story

Arrested late 2004, trial in
progress

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 5/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

Compromising the security of a workstation

The why

To obtain passwords : email, windows session, ...

To install malicious code and maintain further access

To set up a target (put various compromising files)

Many more possibilities

The how

Hardware keyloggers

Network device (openwrt router...) in bridge mode

Removable device with autorun : CD-ROM, U3 USB drive

Offline modification of the boot sequence (MBR)

Online modification of the physical memory (DMA)

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 6/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

Roadmap

1 Physical attacks
School case
Direct Memory Access

2 FPGA on a PCMCIA card

3 Conclusion

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 7/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

DMA attacks

Theory

Historically, all I/O came through the CPU. It’s slow.

DMA instead goes through a fast memory controller

Implemented as part of the PCI specification

Any device on the PCI / PCI Express bus can issue a
read/write DMA

A flawed idea ?

The CPU and thus OS are entirely bypassed, cannot prevent
malicious DMA requests

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 8/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

DMA attacks

Consequences

Any device may read/write the physical memory

Operating system’s code and internal data can be modified

Security mechanisms rendered useless

Example DMA access :

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 9/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

DMA attacks

Practice

FireWire : install Linux on an iPod, then issue DMA requests

PCI/PCI-Express : requires creation of a custom DMA engine

Previous works

Based on FireWire :

2004 – Maximillian Dornseif (Mac OS X)
2006 – Adam Boileau (Windows XP)
2008 – Damien Aumaitre (virtual memory reconstruction)

Based on PCI :

2009 - Christophe Devine and Guillaume Vissian, custom DMA
engine implemented on a FPGA card

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 10/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

School case
Direct Memory Access

DMA attacks

Some applications

Unlock the computer

Automatic installation of malicious code

Difficulties

Code is executed in virtual memory, but we only “see”
physical memory

Method 1 : use signatures, for simple payloads
Method 2 : reconstruct the translation layer between physical
and virtual memory

Complex payload depends on the system’s internal structures,
impacts portability

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 11/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Roadmap

1 Physical attacks

2 FPGA on a PCMCIA card
Unlocking laptops
Executing arbitrary code

3 Conclusion

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 12/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

FPGA on a PCMCIA card

PCMCIA ?

Aka Cardbus or ExpressCard, only interested by the physical
interface

Widely deployed : each laptop has an Cardbus/ExpressCard
slot

Small, portable, we can use it for social engineering

FPGA ?

Give us low level access and control

Can issue custom DMA requests

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 13/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

FPGA on a PCMCIA card

Previous works (2009)

SSTIC (C. Devine & G. Vissian) :

First proof-of-concept of DMA access from the CardBus port
Creation of an “home-made” CPU

Problems encountered

Required writing payloads in assembly (long, tiresome)

DMA reads not reliable due to incorrect implementation of
the PCI standard

Buggy identification of the device by the OS, could lead to
blue screens

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 14/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

FPGA on a PCMCIA card

The state of the art (2010)

Rewrite “from scratch”
Stabilization of DMA reads access ‘A master which is target
terminated with Retry must unconditionally repeat the same
request until it completes”
Correct implementation of the PCI standard
Keeping PCMCIA driver loaded with two tricks :

Dummy read every 1000 cycles ⇒ no sleep
Random subsystem id ⇒ new peripheral detected upon card
insertion, DMA always on

The gory internals

We used the VHDL code of a public-domain CPU (“plasma”)
MIPS processor synthetized on the FPGA
Allows easy programmation (with C !) of the DMA accesses

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 15/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

How it works

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 16/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Example : FPGA on a PCMCIA card

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 17/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Roadmap

1 Physical attacks

2 FPGA on a PCMCIA card
Unlocking laptops
Executing arbitrary code

3 Conclusion

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 18/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Unlocking a laptop under Windows 7 x64

Principle

Modification of the password validation function :
msv1 0.dll!MsvpPasswordValidate (winlockpwn attack, Adam
Boileau, 2006)

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 19/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Unlocking a laptop under Windows 7 x64

Programming the FPGA, a basic example

Looks for the signature in all physical memory pages
The code below is compiled for MIPS and stored in the bitstream

for(i = PHYS_MEM_START; i < PHYS_MEM_SIZE; i += 0x1000)

{

DMA_PAUSE

l = (unsigned char *)(i + 0x290);

if(*(unsigned int *) l == 0x850fc63b)

{

DMA_PAUSE

if(*(unsigned int *)(l + 4) == 0xb8c0)

{

DMA_PAUSE

*(unsigned int *) l = 0x840fc63b; for(;;);

}

}

}

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 20/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Demo

DEMO

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 21/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

What have we learned ?

We can modify what we want

Much better if we can execute what we want :)

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 22/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Roadmap

1 Physical attacks

2 FPGA on a PCMCIA card
Unlocking laptops
Executing arbitrary code

3 Conclusion

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 23/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

What do we want ?

Executing arbitrary code (kernel or user)

Need to be fast (a few seconds)

Must work under Windows x64 with full protection
(PatchGuard, signed drivers, . . .)

Easy to use (payload developed with WDK)

Constraints

Embedded code (32ko for MIPS code, stack and payload)

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 24/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

What do we need ?

Reconstruct virtual space mapping

Finding a pointer to overwrite without triggering PatchGuard

Space for storing our payload

Difficulties

Signed drivers

PatchGuard

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 25/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

x64 Virtual address translation

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 26/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Finding cr3

Classic method

Searching for the beginning of an EPROCESS structure

Use backup copy of cr3 in DirectoryTableBase field

Quicker method

Searching for kernel beginning and particularly the INITKDBG
section

We find the KPCR for the first logical processor here

With the processor block and all control registers included cr3

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 27/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Finding cr3

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 28/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

What pointer ?

We can’t touch IDT or SSDT or kernel code due to
PatchGuard

We need something stealthier, often called and not checked by
PatchGuard

Must read

Skape and Skywing, “A catalog of Windows Local Kernel-mode
Backdoor Techniques”, 2007, Uninformed Vol. 8

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 29/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

NT object model

Windows NT Kernel uses object-oriented approach to
representing resources such as files, drivers, devices, processes,
threads, ...

Each object categorized by an object type represented by a
OBJECT TYPE structure

30+ objects on Windows 7

Each object preceded with a header (OBJECT HEADER)
indicate an index in the object type array ObTypeIndexTable

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 30/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

NT object model

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 31/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Object Type Initializers

OBJECT TYPE structure contains a nested structure named
OBJECT TYPE INITIALIZER

Several fields are functions pointers

struct _OBJECT_TYPE_INITIALIZER, 25 elements, 0x70 bytes

...

+0x030 DumpProcedure : Ptr64 to void

+0x038 OpenProcedure : Ptr64 to long

+0x040 CloseProcedure : Ptr64 to void

+0x048 DeleteProcedure : Ptr64 to void

+0x050 ParseProcedure : Ptr64 to long

+0x058 SecurityProcedure : Ptr64 to long

+0x060 QueryNameProcedure : Ptr64 to long

+0x068 OkayToCloseProcedure : Ptr64 to unsigned char

For example, OpenProcedure will point to nt!PspOpenProcess for a
Process

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 32/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Payload

First stage

Allocate space for driver code, stored in unused memory (for
example, first memory page of a already loaded driver)

Second stage

Kernel code for getting third stage using WSK (Windows Kernel
Sockets), Implemented with a driver

Third stage

Real payload (arbitrary size, just limited by our imagination)
For the purpose of the demo, no third stage

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 33/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Payload

Replacing NT driver loader

Mapping driver section by section

Resolving imports and relocations

Signed drivers

Effectively bypassing signed driver mechanism

PatchGuard

Hooks only in effect for a short time, even if PatchGuard is
watching, it’s too quick

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 34/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Payload : General picture

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 35/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Demo

DEMO

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 36/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Other application

Virtdbg

“ring -1” debugger

Use VMX extensions

Can debug Windows 7 x64 “on the fly” (i.e. without booting
with /DEBUG)

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 37/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Virtdbg

Internals

2 FPGA : COM-1300 for Cardbus and COM-1400 for USB

COM-1400 needed for giving orders to the debugger

Uses

Analyze hardware specific software like DRM

Malware analysis

Windows internals : PatchGuard

Can debug interruption handlers

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 38/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Unlocking laptops
Executing arbitrary code

Virtdbg

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 39/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Roadmap

1 Physical attacks

2 FPGA on a PCMCIA card

3 Conclusion

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 40/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

DMA attacks

Well known since 2004

But always effective and efficient

Perfect for targeted attacks

Limitations

Proof-of-concept for now limited to the PCMCIA port

Cardbus is 32-bit : limited to first 4 GB of memory

Solution : use of the ExpressCard port (WIP)

Protection

Deactivate the PCMCIA/CardBus driver

“IOMMU” (but unused by Windows 7 / Linux / OSX)

glue ;-)

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 41/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Conclusion

An old saying

Physical access = root still holds

Protection

Remain attentive of your surroundings !

Physical protection of the premises

Deactivate unused features : FireWire, PCMCIA, ...

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 42/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Q&A

Thank you for your attention !

Questions ?

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 43/44

Physical attacks
FPGA on a PCMCIA card

Conclusion

Contacts

Laboratoire Sogeti-ESEC
6-8 rue Duret

75016 Paris - France

damien.aumaitre@sogeti.com

christophe.devine@sogeti.com

D. Aumaitre, C.Devine Subverting Windows 7 x64 Kernel with DMA attacks 44/44

	Physical attacks
	School case
	Direct Memory Access

	FPGA on a PCMCIA card
	Unlocking laptops
	Executing arbitrary code

	Conclusion

