Evolution of the iPhone
Baseband and Unlocks

@MuscleNerd

iPhone Dev Team

Hack in the Box, Amsterdam
May 24, 2012

My background

Member of iPhone Dev Team

http://blog.iphone-dev.org (133 million visits to date!)
Initially just interested in baseband, but now also
maintain and extend “redsnow” jailbreak utility

custom ramdisks, blob stitching, downgrades, etc

Tech editor for iOS Hacker’s Handbook by Miller,
Blazakis, DaiZovi, Esser, lozzo, Weinmann (2012)
<musclenerd@iphone-dev.org>

Thursday, May 24, 2012

http://blog.iphone-dev.org
http://blog.iphone-dev.org
mailto:musclenerd@iphone-dev.org
mailto:musclenerd@iphone-dev.org

General BB environment

Communication with BB is via UART, internal USB
or cellular

There’s little independent monitoring and control
of its embedded OS in production mode -- can be
hard to trigger, detect, and analyze crashes

Similar to exploiting bootrom in DFU mode, when direct
feedback is limited or delayed
However, as the BB is crashing, it saves a limited
crash report into its NVRAM which can be

retrieved after the subsequent reboot

Thursday, May 24, 2012

3G/3GS BB crash log

System Stack:
0x406AE300
0x00000008
0x40245C90
0x40322284
0x40442F00

0x4032180C
0x2014E055

Date: 18.06.2011
Time: 06:49

Register:

r0: 0x00000000 rl: 0x00000000 r2: OXFFFF2318
r3: 0x00000001 rd: 0x34343434 r5: 0x35353535
r6: 0x35353535 r7: 0x50505050 r8: 0x00000000

ro: 0x00000000 rl10: O0x406AD320 rll: 0x406B3320
rl2: OxXFFFFFDF8 rl13: O0x406AE318 rld4: O0x201COA75
rl5: 0x50505050

SPSR: 0x40000013 DFAR: OxXFFFFFFDF DFSR: 0x00000005

Thursday, May 24, 2012

IPhone4 BB crash log

Trap Class: 0xBBBB (HW PREFETCH ABORT TRAP)
Date: 27.06.2010

Time: 21:21:09

Magic: 55809

Task name: atc:l1l

System Stack:

0x00000000

0x00000000

0x00000000

0x0009D0AS rl5: 0x5050504C CPSR: 0x400001D7

0x00000002

0x00000001 FIQ Mode registers:
.« . . r8: 0x90B0C9A1 «r9: 0x9D0C8303 rl1l0: 0x44309330
.« o . rll: O0x918ABD44 1rl2: 0x428206C4 1rl1l3: O0x60BDDE1O
.« e . rld: 0x970583DF SPSR: 0x00000010

0x00000000

0x00000000 SVC Mode registers:

r13: 0x72883C50 rl4: Ox601DBFED SPSR: 0x20000053
Fault registers:
DFAR: 0x00000000 DFSR: 0x00000000 IRQ Mode registers:
IFAR: 0x50505050 IFSR: 0x00000005 rl13: OxXFFFF2F20 1rl4: O0x601EA118 SPSR: 0x60000053

Abort Mode registers:
r13: 0x0009B9CO0 rl4: 0x50505054 ©SPSR: 0x40000053

System/User Mode registers:

r0: 0x00000000 «rl: 0x00000000 «r2: 0x00000000
r3: 0x00000001 r4: 0x34343434 «r5: 0x35353535
r6: 0x35353535 «r7: 0x50505050 «r8: 0x00000000
r9: 0x00000000 r10: 0x72881000 rll: 0x00000000

rl2: Ox601AF047 1rl1l3: OxXFFFF3B00 rl4: 0x6CB91B48

Thursday, May 24, 2012

General BB environment

Large portions of BB are executed from flash addresses

Those code segments are not modifiable while BB is running
(simply by virtue of being flash, which requires erase cycles)

There’s no need for ASLR, or WAX checks in flash space

Much smaller partitions of BB flash are writeable (nvram and
secpack) but that's for data, not code

Scatter loading relocates various code+data up to RAM

Especially code that's called frequently (reduces execution
time due to lower latency of RAM vs flash?)

The relocations are to pre-determined linked addresses (not
malloc’d or randomized)

Thursday, May 24, 2012

General BB environment

Security related routines seem to often not be
relocated to RAM -- they stay in flash

Possibly kept there just by chance (usually not
frequently called anyway)

AT parser does remain in flash (but possibly just
because it's so huge)

Apple has occasionally pulled code or data from
RAM back into flash only (example later)

Hidden changelogs

Throughout the first dozen 3G/3GS BB updates, we
were able to monitor exactly what fixes Apple was
making to BB

They were accidentally embedding the changelogs
directly in the baseband images

Apparently part of the "ClearCase" configuration step
Was in gzipped form at a known offset into the image
Was actually programmed to flash too (!)

The comments about where the trouble areas were
helped direct where to look for bugs

Thursday, May 24, 2012

Hidden changelogs

i
HHHHAHHHAHHH#HH#HH Driver Patches #HHAHHHHHAHHAHHHAFHHAHHHHHHHHHHHHHHHHAHHHHHAHHHH

SMS00743609 Sometimes MA traces aren't transferred
element /vobs/dwddrv/XDRV/src/xdrv driver if.c /main/sms736266/5

SMS00750464 FTA TC 18.1 (Temporary Reception Gap) Fails
element /vobs/dwddrv/DSP/src/fw sgold.c /main/dwd sgold3/aa ifwd sms00743767/5

SMS00751055 Unlocking provisioned BB crashes BB
element /vobs/dwddrv/EE_DRV/src/ee.c /main/dev_eep static backup/9

#5697224 SMS00726764 BB / SW:port allocation table for EVT2 to be reflected by sw

(SMS00726764)
element /vobs/dwddrv/XDRV/src/xdrv driver if.c .../sms736266/4
element /vobs/dwddrv/XDRV/src/xdrv_req.c /main/ifwd sms00731097/

cnnbg ice2 int/1

SMS00745331 N82: Critical battery level notifications are not sent
element /vobs/dwddrv/CHR/src/chr meas.c /main/dwd mpeuplus globe int/ifwd ice2/
ifwd sms00745331/2

SMS00706345 Generate battery curves
element /vobs/dwddrv/EEP/src/eep.c /main/nbg mpe driver/dwd mpeu/
dwd ec old spinner structure/dwd mpeplus/ifwd ice2 main/ifwd sms00706345/4

Thursday, May 24, 2012

Diagnostic and cal routines

Basebands contain lots of unused diagnostic and calibration commands
Some of the commands include memory writes and reads of big static
buffers/arrays at fixed (linked) locations

Normally enabled only on specially provisioned phones, but in the end
it comes down to a simple flag

If you can tamper with that one flag via an exploit, you open up the routines and
vastly simplify further exploit development
The tables for these routines used to be scatter loaded into RAM (unlike

the normal AT command tables)

This also made it easy to commandeer the command table entries, and use them
to hooks to run arbitrary injected code

The tables were eventually removed from the scatter list and are now back in
flash, so they're harder to commandeer

Most of the commands are still there including the mem writes/reads

10

Thursday, May 24, 2012

Diagnostic embedded help

Quick help:
Wildcard-supported by '*' operator before and/or after sub-symbol-string e.g 'my fun*'

Queries by '?' operator:

-functions starting with 'rf'
-function description for 'my rf func'

rf*()?
my rf func()??

-all enum types : $*?
-'my enum' items: S$my enum??

-'mystruct.myvar' variable value: mystruct.myvar?
-'mystruct' elements : mystruct.*??
-'mystruct.myarray[3,10] ¢ mystruct.myarray[3,10]?2?

(NOTE1l: number of '?' determines query level
higher levels generally means more info)

(NOTE2: after ?'s optionally put output format specifier
e.g. 'myvar??%x' for hex output)

Write variables:
-write 0x43 to mystruct.myvar : mystruct.myvar=0x43
-write 3290 to mystruct.myarray[4]: mystruct.myarray[4]=3290
-write elements of above array ¢ mystruct.myarray[2,5]={5,0x30,4500}

Call functions:
-call myfunc(%d,%u,%d) : myfunc(-3,0x30,true)
(note: 'true' is of enum type $bool

-call myfunc(%d, %&qd[9]) : myfunc(50,{4,2,3,70,100})
(note: array function arguments need not be completely filled)

variable type specifiers examples:

$d=int %1ld=long int %u=uint %c=char %hd=half int %qu=quarter uint (~u8), %$s=string
$&d[<n>] int array of size <n>

11

Thursday, May 24, 2012

Diagnostic routine example

at@gticom:

OK

at@seq kill(2)

OK

at@seq init(2,0)

OK

at@seq insert(2,1,"print("iPhone DevTeam countdown to 3.0:")")
OK

at@seq insert(2,2,"new("%d:1",1)")
OK

at@seq insert(2,3,"i=3");

OK

at@seq insert(2,4,"while(i>0)")

OK

at@seq insert(2,5,"print(i)")

OK

at@seq insert(2,6,"i=calc(i-1)");
OK

at@seq insert(2,7,"endwhile");

OK

at@seq insert(2,8,"print("CAN I HAZ YELLOWSNOW?2?2!2")");
OK

at@seq run(2)

OK

iPhone DevTeam countdown to 3.0:

3

2

1

CAN I HAZ YELLOWSNOW?2?2!?

at@mw(0x403c6068,16,{0xe92d5ffe,0xeb00002f,0xe8bd9ffe,0x4b21b530,0x681b2080,0x0180b084,0x£854£000,0x491f4ble,
0x1c05681b,0x20002211,0x£84cf000,0x481d4blc,0x4669681b,0x£00022ff,0x2300£845,0x9b00702b})

12

Thursday, May 24, 2012

AT commands

The 3G/3GS basebands still contain several

vulnerable AT commands
But Apple started to mask off unused commands

(rather than audit or remove them)
Unlike the diagnostic commands, these disabled

commands aren't designed to be dynamically
enabled

The bitmask is created once at BB startup and is never
updated again

Thursday, May 24, 2012

AT command disable bits

01.59.00 command disables =
111111111111111100001011111111001000000001110100000000011011101100
010011110101100110111100011111000011100000000000000000000000001000
0000111111111111111100101111110010100000000010000100112111111111011
oo1111111111110111011012121111111011221111012101121172111111111101111111
011111000101101011111011110111110010101011011111000110111110100101
1100111111100101010101111010101100100011011101001100111212111121112
000010101010110001110111011010000010

02.10.04 command disables =
111111111111111100001011111111001000000001110100000000011011101100
010011110101100110111100011111000011100000000000000000000000001000
000011111111111111110010111111001010000000001000010011211111111011
oo111111111111011101101212111111101122111101210112112111111111101111111
011111000101101011111011110111110010101011011111000110111110100101
1100111111100101010101111010101100100011011101001100111212111121112
000011101010110001110111011010000010

14

Thursday, May 24, 2012

IPhone2G SW unlock

Bootrom invokes bootloader which then sigchecks baseband
Bootloader was either version 3.9 or 4.6 depending on manufacture date
3.9 vulnerable to Bleichenbacher RSA forged signature

secpacks vulnerable: could write arbitrary carrier lock tables ("iPhoneSimFree" --
commercial unlock)

main BB FW also vulnerable: could flash arbitrary BB, ignoring carrier lock tables
completely ("AnySIM” from iPhone Dev Team, free)

4.6 vulnerable to firmware update trick that could erase bootloader

could then flash stock Apple BL 3.9 images and use the 3.9 exploits
Eventually: "BootNeuter” app (iPhone Dev Team, free)

flashed a BB modified to remove NOR "locked" attributes of BL pages and erase/
reflash them directly

included a "Fakeblank" option for running custom code injected at BB boot time
over serial port (because bootloader appeared "missing")

15

Thursday, May 24, 2012

IPhone3G SW unlocks

About 70 tasks run in the 3G/3GS BB, across a few dozen priorities
levels. Most tasks don't directly call each other.

They pass short messages to each other via mailboxes, or longer via queues
The messages involved with the carrier check are between the
"sim” and “sec” tasks

By watching the mailbox semaphore owners, we can chart the
general activation/unlock operations

ultrasnow 3G/3GS tampered with "compare_lock_data" message

sec code segment is in flash so can't directly patch it with an exploit
ultrasnow inserts a new task at a priority ox44, one level higher
than “sec”

We see the messages from the sim task before sec can

16

Thursday, May 24, 2012

3G/3GS BB tasks

at

OK

at@devteam()

devteam 3gbb tool vl.l

70 tasks [with priorities]:

drv_cb [3C] gct[78] socl[78] 1lu:1[05]
umacul:1[0A] umacdl:1[0B] umacc:1[0C] wurlcul:1[14]
urlcdl:1[15] urlcc:1[16] wurrcbp:1l[lE] urrcdc:1[1lE]
urrcm:1[1E] ubmc:1[1lE] urabmupd[1lE] 1l1lg:1[05]

dll:1[23] dll:2[23] 1llc:1[32] mac:1[23]
rlc:1[2D] rrc:1[37] grr:1[37] rrl:1[37]
atc:1[55] dch:1[55] df2:1[28] drl:1[23]
dtn:1[28] dtt:1[23] gmm: 1[3C] gmr:1[50]
itx:1[3C] mmc:1[3C] mma:1[3C] mme:1[3C]
mmr:1[3C] mnc:1[46] mng:1[46] mni:1l[46]
mnm:1[46] mnp:1[46] mns:1[46] oms:1[32]
pch:1[55] snp:1[46] sim:1[4B] smr:1[46]
mmi:1l[55] mdh:1[46] aud:1[55] tic:1[3C]
pbh:1[5A] xdr:1[32] gddsdl:1[48] gps:1[5A]
mon[78] ata[54] ipr rx1[54] 1ipr rx2[54]
ipr rx3[54] mux[3C] io evt[3C] atcptest[45]
sec[45] xdrv _dat[96] EE task[FE] gate rtr[FF]
DMA[FF] sme[37]

17

Thursday, May 24, 2012

sim -> sec activation messages

sim:1 sent sec 0xb msg from get lock profiles
sim:1 sent sec 0xc msg from get file profile
sim:1 sent sec Oxc msg from get file profile
sim:1 sent sec Oxc msg from get file profile
sim:1 sent sec Oxc msg from get file profile
sim:1 sent sec 0xd msg from compare lock data
sim:1 sent sec 0x1 msg from get bcd imei
sim:1 sent sec 0x13 msg from get tmsi

sim:1 sent sec 0x13 msg from get tmsi

sim:1 sent sec 0x13 msg from get tmsi

sim:1 sent sec 0x13 msg from get tmsi

18

Thursday, May 24, 2012

ultrasnow on 3G/3GS

void inject() {
status = nu TCCE Create Task((TC TCB *)system malloc(sizeof(TC TCB))

"devteaml" /*task name*/,
(void*)0x4042d9a0 /*fixed address of devteaml() below*/,
0o, O,

system malloc (UNLOCK STACK SIZE), UNLOCK STACK SIZE,
0x44 /*priority*/,
0 /* time slice */, NU_PREEMPT, NU START);

}

void devteaml () {
MB MCB *mbox = (MB MCB *)SEC MAILBOX; // the mailbox structures are at fixed locations
while (1) {
// intercept any mailbox messages intended for SEC
// (we were installed above at priority 0x44, SEC is at lower priority 0x45)
nu MBCE Receive From Mailbox((void*)mbox, msg, NU SUSPEND);
if (msg[0]==0xd /*ACT*/) {
// if the message to SEC was an activation query, short circuit the query

uint32 t *p = (uint32 t *)msg[l];

p[3] = 1; // do all the stuff that

*(uint32 t *) (SECBASE+0x14) = p[0]; // SEC would have done if it were to decide
*(uint32 t *) (SECBASE+0x18) = p[l]; // carrier was allowed by the lock tables
uint32 t *pp = (uint32_t *)p[2];

pp[0] = 0x0100£f£00; pp[l] = 0x04020401; pp[2] = 0x04040403;
msg[0]=0x20; // change func id from 0xd to 0x20

}

// deliver message whether it was tampered above or not

nu MBCE Send To Mailbox((void*)mbox, msg, NU SUSPEND);

}

19

Thursday, May 24, 2012

IPhoneg software unlock

Similar message tampering technique was used in
iPhones 01.59.00 ultrasnow

Apple started looking for this message tampering
(although they have typos all throughout their debug
strings, calling it "tambering")

A much more challenging obstacle on the iPhones4 was
the hardware-based DEP mechanism (“crossbar”).

As soon as you write to memory, hardware disables all
execution rights for the address range containing it

The solution @planetbeing and | developed for ultrasnow to
overcome the crossbar is detailed in the iOS Hacker's Handbook

20

Thursday, May 24, 2012

IPhones “tamber” check

SEC _compare lock data+lA MOV R2, SP

SEC_compare lock data+lC MOVS RO, #0xD

SEC compare lock data+lE MOV R1, SP

SEC_compare lock data+20 STMIA R2!, {arg0-arg2}
SEC_compare lock data+22 BL send_msg_to_SEC_task
SEC _compare lock data+22

SEC_compare lock data+26 CMP RO, #0xD

SEC _compare lock data+28 BEQ ok3

SEC compare lock data+28

SEC_compare lock data+2A MOVS R2, #0

SEC_compare lock data+2C MOVS RO, #2

SEC_compare lock data+2E ADR R1, aErrorFunc_ idHasBe 3 ; "Error: func_id has been
tambered”

SEC_compare lock data+30 BL msg

SEC compare lock data+30
SEC_compare lock data+34

SEC _compare lock data+34 ok3

SEC _compare lock data+34 MOV R3, SP

21

Thursday, May 24, 2012

SIM interposer unlocks

Commercial SIM interposer unlocks take advantage of timing or
protocol quirks of the baseband, rather than trying to trigger a
traditional exploit and custom code execution

They physically sit between SIM and SIM reader, so they can alter,
delay or block communication between the SIM and BB

Early example of SIM interposer was “Turbosim”

BB quirk: when a SIM was inserted, BB would read the IMSI 3 separate times

The first 2 times were solely for comparing that SIM’s IMSI against the
carrier lock tables

Turbosim would fake the IMSI sent those first two times, substituting in the
MCC and MNC of the official carrier

It would then send the real IMSI for the SIM when the BB needed it to
actually access the carrier network

22

Thursday, May 24, 2012

SIM interposer unlocks

SIMs don't have access to the same AT parser that the
BB exposes to Comm~Center (and ultrasnow)
SIMs do have access to the BB’s SIM Toolkit interface

JerrySIM was an iPhone Dev Team unlock that exploited this
SIM/STK interface

Apple fixed the STK bug before we could deploy it (we saw it
mentioned in the hidden changelogs!)

For an example of a network-side hack that exploits the
baseband from further away than the SIM tray, see

@esizkur's remote listener example in the iOS Hacker's
Handbook

23

Thursday, May 24, 2012

JerrySIM fix in hidden changelog

Changelog 02.04.03.txt:# SMS00788402/SMS00787413 (CL->MSAP)
satfuzz / "jerrysim" STK attack still crashes ICE2
(SMS00787413)

Changelog 02.04.03.txt:# SMS00788406/SMS00780636: satfuzz /
"jerrysim” STK attack still crashes ICE2 (SMS00780636)

24

Thursday, May 24, 2012

IPhoneg carrier activation

Non-Apple baseband typically get unlocked via one-time "AT+CLCK"
Carrier gives customer unique NCK code when subsidy has been paid, etc
Baseband crypto verifies the NCK and sets a permanent flag
The NCK vendor code is in iPhone BB, but it's ignored (no permanent flag!)
Apple instead implements "activation tickets"
No such thing as a permanent iPhone unlock

Activation ticket specifies which MCC/MNCs are valid. Signed by Apple's servers using
typical public key signature techniques

The server populates and signs the activation ticket based on what carriers the Apple
activation servers have on record for a given IMEI

Commcenter sends activation ticket to BB after every BB reset (it's not kept in BB flash)

Activation ticket is preserved in FS through an IPSW "update”, but not "restore"
On the i4, the activation ticket is TEA-encrypted using device's unique

hardware thumbprint (NOR chip IDs, etc)

Most can't decrypt the i4 activation tickets because they don’t know these values

25

Thursday, May 24, 2012

IPhoneg4 activation ticket

Field Offset Len Note

ticketVersion 0 4 must be 2 (always in plaintext)

certLen 4 4 must be 18c

certVersion 8 4 must be 1

pubKeyLen c 4 must be 0x400

exponent 10 4 RSA exponent (3)

certificateKey 14 80 RSA modulus for ticket payload

certificateNonce 94 80 rest of certificate

certificateSig 114 80 certificate signature

ICCID 194 c BCD, must match this SIM's ICCID (wildcarding allowed)
IMEI la0 8 BCD, must match this phone's IMEI (no wildcarding)
thumbprint la8 14 must match this phone's HW thumbprint

payloadSize 1bc 4 size of IMSI payload (will be multiple of c)

recordA 1cO c first IMSI record (wildcarding allowed)

[recordB lcc c OPTIONAL additional IMSI records (wildcarding allowed)]
[recordC .o .. .o]
ticketSig lcc 80 signature of ticket

// The IMSIs listed in activation ticket for i4 locked to USA AT&T (starting at "recordA"):

3c 00 00 0O // size of below IMSI table
00 00 00 00 31 01 50 ee ee ee ee ef // 310 150 *x*kxkkx%
00 00 00 00 31 01 70 ee ee ee ee ef // 310 170 **kxxkkkx
00 00 00 00 31 04 10 ee ee ee ee ef // 310 410 **kxkkkkx
00 00 00 00 31 11 80 ee ee ee ee ef // 311 180 **xkkkkxx*
00 00 00 00 31 09 80 ee ee ee ee ef // 310 980 ****kxxkxx

MCC 310 = USA

MNC Carrier

150 Cingular Wireless (discontinued)

170 Cingular Orange

180 West Central Wireless

410 AT&T Mobility (standard)

980 AT&T Mobility (not in commercial use)

26

Thursday, May 24, 2012

IPhone4S carrier activation

iPh
T
T
A

one4S uses flow similar to iPhone4 with some minor changes
hey don't bother to TEA-encrypt the ticket anymore
ney encode the ticket using standard ASN.1 notation

most everything signed by Apple nowadays uses ASN.1, even APTickets

The recent SAM unlock took advantage of temporary glitch in the

act
If

Ivation servers
you requested a ticket using MCC/MNC of your iPhone model’s official

carrier, the server erroneously associated your (non-official) SIM's ICCID with
the official MCC/MNC

After the initial bogus request was made, you could then send a real ticket
request using your actual MCC/MNC and ICCID. The server would hand you
back a signed ticket good for that ICCID

N

ot quite a full unlock (because each ticket is tied to one ICCID only)

The issued tickets are good for 3 years, so can be manually saved and re-used

27

Thursday, May 24, 201

2

IPhonesS act ticket (locked)

hl=4 1= 446 cons: SEQUENCE

d=0

d=1 hl=2 1= 1 prim: INTEGER :01

d=1 hl=2 1= 11 cons: SEQUENCE

d=2 hl=2 1= 9 prim: OBJECT :shalWithRSAEncryption

d=1 hl=3 1= 136 cons: SET

d=2 hl=3 1= 4 prim: cont [63] BBSerNum 12345678

d=2 hl=3 1= 4 prim: cont [64] BBChipID el005a00

d=2 hl=3 1= 20 prim: cont [75] serverRandomness 9af645daz232...
d=2 hl=4 1= 7 prim: cont [1005] IMEI 01291234567890
d=2 hl=4 1= 60 prim: cont [3005] IMSI 00000000310150eeceeceeceeef
00000000310170eeceeceeceecef 00000000310410ceceeceeceef 00000000311180ecceeceeceecetf
00000000310980ececeeceecetf

d=2 hl=4 1= 4 prim: cont [3006] 00000000

d=2 hl=4 1= 4 prim: cont [3007] 01000000

d=2 hl=4 1= 4 prim: cont [3008] 00000000

28

Thursday, May 24, 2012

IPhone4S act ticket (SAM)

d=0 hl=4 1= 411 cons: SEQUENCE

d=1 hl=2 1= 1 prim: INTEGER :01

d=1 hl=2 1= 11 cons: SEQUENCE

d=2 hl=2 1= 9 prim: OBJECT :shalWithRSAEncryption

d=1 hl=2 1= 102 cons: SET

d=2 hl=3 1= 4 prim: cont [63] BBSerNum 12345678

d=2 hl=3 1= 4 prim: cont [64] BBChipID el005a00

d=2 hl=3 1= 20 prim: cont [75] serverRandomness 19fb083b96acda80...
d=2 hl=4 1= 7 prim: cont [1005] IMEI 01291234567890

d=2 hl=4 1= 10 prim: cont [3004] ICCID 89011234567812345678
d=2 hl=4 1= 12 prim: cont [3005] IMSI 000000003102601234567890
d=2 hl=4 1= 4 prim: cont [3006] 00000000

d=2 hl=4 1= 4 prim: cont [3007] 01000000

d=2 hl=4 1= 4 prim: cont [3008] 00000000

29

Thursday, May 24, 2012

3G/3GS baseband downgrades

Until the i4, basebands could only be reflashed with newer versions
Unlike the main firmware, which has no version checking per-se

Policy enforced by the "emergency boot loader" EBL that's a normal

part of Apple's BB update process

EBL injected over serial, sig checked by bootrom

Executes entirely in RAM and controls the rest of the reflash, including sig
checking the incoming main image and enforcing the no-downgrade rule

The 5.8 bootloader of early iPhone3G can be exploited and tricked it
into running a tampered EBL

"Fuzzyband" implements this exploit for iPhone3G with 5.8BL, allowing
downgrades to ultrasnow-compatible basebands

The bug was fixed in version 5.9 of the iPhone3G bootloader

Cannot simply reflash the 5.8 bootloader into those newer units due to
bootrom checks of the bootloader

30

Thursday, May 24, 2012

IPhone3G BL 5.8

get ldr from uart and go+3F8 loc 8141C

get 1ldr from uart and go+3F8 ADD R2, SP, #0x40+signed_size

get ldr from uart and go+3FC ADD R1, SP, #0x40+signed_addr

get 1ldr from uart and go+400 LDR RO, =0x93DO00

get 1ldr from uart and go+404 BLX rsa_chk_ldr_signature //(must still be a signature)
get 1ldr from uart and go+404

get 1ldr from uart and go+408 CMP RO, #0

get 1ldr from uart and go+40C BNE die

get 1ldr from uart and go+40C
get 1ldr from uart and go+410 This code is MEANT to verify the addr and size of the EBL:

get 1ldr from uart and go+410 signed addr == 0x86000

get 1ldr from uart and go+410 signed_size == 0xdd00

get 1ldr from uart and go+410 Instead it does this:

get 1ldr from uart and go+410 signed _addr == anything

get 1ldr from uart and go+410 signed size == anything except 0xdf00 (only checked if signed addr was 0x86000)

get 1ldr from uart and go+410

get 1ldr from uart and go+410 To exploit this, put any valid signature there (but make sure
get ldr from uart and go+410 that the signature still verifies whatever it was meant to).
get 1ldr from uart and go+410 For instance: use the signature for the current main FW

get 1ldr from uart and go+410

get 1ldr from uart and go+410 BL58_ BUG

get ldr from uart and go+410 LDR RO, [SP,#0x40+signed_addr]
get 1ldr from uart and go+414 CMP RO, #0x86000

get 1ldr from uart and go+418 BNE continue

get 1ldr from uart and go+418

get 1ldr from uart and go+41C LDR RO, [SP,#0x40+signed_size]
get 1ldr from uart and go+420 CMP RO, #0xDFOO

get 1ldr from uart and go+424 BEQ die

get 1ldr from uart and go+428 continue

get 1ldr from uart and go+428 LDR R2, =0x20040C48

31

Thursday, May 24, 2012

IPhone3G BL 5.9

get 1ldr from uart and go+3F8 1loc 81F6C

get ldr from uart_ and go+3F8 ADD R2, SP, #0x40+signed_size
get 1ldr from uart and go+3FC ADD R1, SP, #0x40+signed_addr
get 1ldr from uart and go+400 LDR RO, =0x93D00

get 1ldr from uart_and go+404 BLX rsa_chk_ldr_signature

get 1ldr from uart and go+404

get 1ldr from uart and go+408 CMP RO, #0

get 1ldr from uart_and go+40C BNE die

get 1ldr from uart and go+40C

get 1ldr from uart and go+410 LDR RO, [SP,#0x40+signed_ addr]
get 1ldr from uart and go+414 CMP RO, #0x86000

get 1ldr from uart and go+418 BNE die

get 1ldr from uart and go+418

get ldr from uart_ and go+41C LDR RO, [SP,#0x40+signed_size]
get 1ldr from uart and go+420 CMP RO, #0xDDOO

get ldr from uart and go+424 BNE die

32

Thursday, May 24, 2012

IPhone4 baseband downgrading

Starting with the iPhoneg, the "no downgrade" rule is no
longer enforced by EBL

Instead, the baseband reflash process is personalized for each
unique iPhone with signed BBTickets

Part of what's signed includes unique BB chip IDs for that
ohone, and a random nonce generated by the EBL

After submitting all the personalized information to Apple's
upgrade server, the EBL checks that the returned signed
BBTicket is correct and then flashes it along with the
iIncoming BB image

As long as Apple is currently signing that baseband version, it
will be flashed (even if it's a downgrade)

33

Thursday, May 24, 2012

IPhone4 baseband downgrading

This is useful mostly during iOS beta periods, when the

app developers may need to come back down from a

beta version (which often includes a different baseband)
By comparison, trying to downgrade 3G/3GS FW causes the
iOS restore to fail due to downward BB version

The signed i4 BBTicket is also verified on every BB boot

Unlike the main firmware APTickets, the BB verifies that the

nonce hash in the BBTicket matches the nonce originally
generated by the EBL

The actual nonce is kept in a secure hardware register in the BB
chip, only written to by EBL

34

Thursday, May 24, 2012

IPhone4S baseband

iPhone4S has no flash to store the main BB FW or bootloader
Enters a sort of emergency service mode every time it's reset
It has nothing to boot by itself -- needs main AP assistance

Compared to normal Qualcomm basebands, it's as if the bootrom failed to validate
the 2nd-stage DBL in flash, and entered DLOAD mode (almost!)

It won't accept arbitrary code -- must be signed
Apple also modified the the normal Qualcomm bootrom to require that the
very first thing sent in DLOAD mode is a BBticket

Apple calls this the "Maverick" protocol in Commcenter

Similar concept to the iPhones BBTicket, except now the BBTicket is stored over on
the main AP filesystem, not in flash (remember there is no flash)

Restore process stores the personalized *.bbfw images and BBTicket on root
filesystem (which is mounted read/write during the restore)

BBticket in the *.bbfw file must have nonce matching the one saved in persistent BB
hardware register

35

Thursday, May 24, 2012

IPhone4S baseband

Qualcomm has extensive debug commands in DIAG protocol

Apple disables them like the extraneous 3G/3GS disabled AT commands
There's a bug in Apple’s Maverick protocol that allows unauthorized
access to the bootrom space
Each stage of the flash-less boot provides different angle for finding bugs
Maverick (bbticket.der), DBL, OSBL, AMSS

Can fuzz for bootloader-level bugs without lengthy (and dangerous) flashing --
it's never been so quick and safe to do this on an iPhone baseband

Any bugs in early boot stages likely more powerful

Downside: AT parser is gone. Replaced by Qualcomm protocols and internal USB
No chance to brick the BB by playing (every boot is an emergency boot!)
iPad3’s Qualcomm baseband appears to move much of the codebase
from ARM over to the QC Hexagon DSP...is the iPhone baseband next?

Thursday, May 24, 2012

3G/3GS baseband downgrades

3G/3GS baseband can be "upgraded" to iPada BB version 06.15

Still vulnerable to the AT+XAPP exploit

EBL allows the upgrade, since it satisfies the "greater than" check

Normal 3G/3GS basebands are still down in the o5.xx range

But 06.15 baseband has limited GPS functiona
primarily uses wifi and cellular tower location ¢

ity (assisted-GPS that
atabases, not satellites)

Now that Apple is officially unlocking many old

er USA 3G/3GS units,

unlockers want to come back down to the normal 3G/3GS baseband

EBL won't allow this, but we still can run custom code within main baseband via

the ultrasnow exploit

Compared to the EBL runtime environment, trickier

to reflash from a running

baseband because you can’t erase while you're using that NAND partition

The baseband itself is partially executing from the flash

Need to do some kind of controlled shutdown of Nucleus (which isn't designed for that)

37

Thursday, May 24, 2012

3G/3GS baseband downgrades

3GS phones are still being sold

Until a recent update by Apple to newer NOR+RAM chips, the
06.15 trick still worked

But the 06.15 BB doesn't recognize the newer RAM and so it
hangs during init, bricking the radio
EBL doesn't recognize this compatibility issue and so it happily
updated/bricked to the 06.15 image the unlocker gave it

EBL itself can still be injected in this bricked state, but it will refuse to
downgrade (as usual)

Some commercial unlock sellers retrofit new 3GS phones with
the older BB+NOR+RAM boards (and then apply the 06.15
upgrade and ultrasnow unlock)

Thursday, May 24, 2012

Baseband brickability

iIPhone2G

Brickable if the BL image flashed to NOR crashed due to bad code
recoverable via original A17 hardware hack (makes BL look empty)

iPhone3G and iPhone3GS

Brickable if only one of the two bootloader page is empty (normal BL spans
two NOR pages)

In this case, EBL is never given a chance to run
Looks like unintended side effect (unanticipated condition?)
iIPhoney
Not brickable even with a partially erased or tampered bootloader
Will just wait for an EBL image to be uploaded to fix it
iPhone4S

Not brickable (no persistent bootloader at all!)

39

Thursday, May 24, 2012

Questions?

Thanks!

