
Finding the Weak Link in Binaries 
Ollie Whitehouse 



Agenda 

• What 
• Why 
• How 
• Conclusions 
 



What? 

 



What? 

Without debug symbols or source    code identify Windows binaries    that do not leverage  the available    defenses … easily and quickly  



What? 

• OS provided defenses 
• Compiler provided defenses 
• Compiler enabled defenses 
• Linker enabled defenses 
• Developer enabled defenses 
• Developer secure coding practices 
 



What? 

• Version of compiler / linker 
• Compiler / linker enabled protections 

• ASLR 
• DEP (NX) 
• Stack cookies 
• Safe Structured Exception Handling 

• Developer used defensive APIs 
• Heap corruption behavior, DEP policy 
• DLL planting, pointer encoding 

 



What? 

• SDL banned APIs 
• Dangerous APIs  

• undermining compiler/linker protections 
• UAC / Integrity Level - Developer 
• .NET security - Developer 

• Unmanaged code 
• Strong names 
• Partially trusted callers 

 



Why? 

 



Why? - Defensive 

• A product == many vendors 
• e.g. Adobe Reader 10.0 == [guess?] 

• License != source code 
• License != private symbols 
• SDL assurance… 

• getting the free security features enabled 
• End user assurance / threat awareness 

• Understanding where you need EMET 
 



Or put another way 

• A vendors SDL is not enough 
• doesn’t always flow upstream 

• A vendor who ships doesn’t assure 
• all third party components 

• End user organisations taking ownership 
• of risk 
• of mitigations 

 



Why? - Offensive 

• Mitigations are expensive / difficult 
• Application specific bugs are 
expensive  

• Maximize research ROI 
• if your goal is to exploit 
• … find the weak link 
• … reduce headaches 

 



Or put another way 

• IIS 7.5 FTP DoS 
• Chris Valasek / Ryan Smith school us 

• ‘Modern Heap Exploitation using the Low 
Fragmentation Heap’ 

• Achieved EIP 
• … still no win … ASLR 
• … try an minimize the need for info leaks … 
• … lets minimize the tears … 
• … unless you want to info leak to win … 

 



How? 

 



Version of Compiler / Linker 

• Linker version in the PE header 

• ‘Rich’ header 
• Microsoft compiler specific 
• documented in 29a virus e-zine in 2004 
• further documented in 2008 
• embeds compiler IDs  
• XOR encoded 

 



Version of Compiler / Linker 

 



Version of Compiler / Linker 

• Version mapping exercise 
undertaken in January 2010 

• Visual Studio 6 -> Visual Studio 
2010 mapped 

• Why? 
• Missing compiler protections 
• Weaker compiler protections 

 



Compiler / Linker Protections 

• ASLR compatibility – PE header 

• Data Execution Prevention – PE header 

 
  * always on for 64bit no matter what 
 



Compiler / Linker Protections 

• Stack Cookies – PE Header, Imports and 
Heuristics 

• imports 
• _crt_debugger_hook 

• heuristics – GS function epilogue / prologue 
• allows versioning 
• using FLIRT like signatures 

 



Compiler / Linker Protections 

• SafeSEH – PE header (32bit only) 
• SEH  == Structured Exception Handling 

 



Compiler / Linker Protections 

• Load Configuration Directory size 
• If size of directory entry <> 64 then 
MS12-001 

• NOT the size field in the LCD! 
• Microsoft Visual C msvcr71.dll == 72 
• Anything built with Microsoft Visual C+
+ .NET 2003 RTM 

• suprising amount of stuff 
 



Default Process Heap 

• Default process heap executable 
• PE header 

 



Shared Sections 

• Shared sections executable & writeable 
• PE header 
• would be mapped across processes 

 



Defensive APIs 

• HeapSetInformation 
• HeapEnableTerminationOnCor
ruption 

• SetProcessDEPPolicy 
• PROCESS_DEP_ENABLE 

• EncodePointer 
 



Banned APIs 

• Microsoft SDL banned APIs 
• parse the Import Address Table 
• 145 or them 
• indication of security awareness 

 



Dangerous APIs 

• VirtualAlloc 
• doesn’t benefit from ASLR 
• if mapping pages executable == win 
• released VirtualAlloc_s.h at Recx 

• LoadLibrary 
• if DLL planting mitigations aren’t used 

 



DLL / Executable Planting 

• Use of LoadLibrary / CreateProcess 
• But doesn’t use 

• SetDLLDirectory 
• SetDefaultDllDirectories 
• AddDllDirectory 

• There is also a registry key 
• … more on this later 

 



UAC / Integrity Level 

• In the binaries manifest 
 



.NET Security 

• Strong name checks 
• Allow partially trusted callers 

• AllowPartiallyTrustedCalle
rsAttribute 

 



.NET Security 

 



Windows 8 Containers 

• New for Windows 8 
• a new DLL characteristic 

• Manifest 
• detailing capabilities 

• … for more information refer to 
http://recxltd.blogspot.com/2012/03/
windows-8-app-container-security-
notes.html … 

 



Miscellaneous 

• Force Integrity 

• Company  
• File Version resource section 

• Signer 
• Signature type 
 



Existing tools… 



Existing Tools – Looking Glass 

• from Errata Security 
• http://www.erratasec.com/ 

• .NET Based PE Scanner 
• Scans the file system or running processes 
• Limitations in checks (some) 

• No /SafeSEH  
• No /GS 
• No HeapSetInformation / 
SetProcessDEPPolicy 

 



Existing Tools - BinScope 

• from Microsoft 
• http://www.microsoft.com/download/en/
details.aspx?id=11910 

• Lots of checks 
• some of what I’ve discussed, but not all! 

• Some Extra 
• non-GS friendly initialization / coverage 
• ATL version and vulnerable check 

• Needs private symbols! 
 



How I did it… 



Demo 



Beyond binaries 

• Defense in depth features via the registry 
• Needs installer teams buy-in 
• or after market adoption 
• Image Execution Options 

• MitigationOptions 
• CWDIllegalInDllSearch 
• DisableExceptionChainValidation 

 



But… 



Even with all these… 
we don’t mitigate vtable overwrites… 

 



Bonus Material - ELF 

• Similar(ish) tool exists for ELF 
• readelf && a  
shell script (checksec.sh  
@ trapkit.de) 

• RPATH / RUNPATH 
• contained in a section of an ELF 
• can override library locations 
• path doesn’t exist and you can  
create == win 



Summary / Conclusions 

 



Summary / Conclusions 

• First pass binaries analysis doesn’t have to 
be rocket science 

• Help with assurance / assessment 
• for vendors and / or end organisations 

• Help with target identification 
• target lower hanging fruit 
• less SDL aware components 

• Without the use of symbols… 
 



There is still more to do… 

Detect the use of the /sdl switch 
http://blogs.msdn.com/b/sdl/
archive/2011/12/02/security.aspx 
 



UK Offices 
Manchester - Head Office 

Cheltenham 

Edinburgh 

Leatherhead 

London 

Thame  

North American Offices 
San Francisco 

Chicago 

Atlanta 

New York 

Seattle 

Boston 

Australian Offices 
Sydney 

European Offices 
Amsterdam - Netherlands  

Munich – Germany 

Zurich - Switzerland 

Thanks! Questions? 
 

Ollie Whitehouse 
ollie.whitehouse@nccgroup.com 


