
Page Fault Liberation
Army

Sergey Bratus
Julian Bangert

Trust Lab
Dartmouth College

Wednesday, April 10, 13

“No instructions were
harmed in the making

of this talk”

Wednesday, April 10, 13

Disclaimer

• Turing complete it’s just a way of
describing what kind of computations an
environment can be programmed to do
 (T.-c. = any kind we know, in theory)

• Wish we had a more granular scale
better suited to exploit power

Wednesday, April 10, 13

Today’s
Slogan

 Any input is a program.

Any sufficiently complex input is indistinguishable from byte code;
any code that takes complex inputs is indistinguishable from a VM.

Wednesday, April 10, 13

Intro Example:
ABI Metadata Machines

Sarah Inteman/John Kiehl

Wednesday, April 10, 13

LD.SO CODE

ELF relocation machine

Wednesday, April 10, 13

ELF metadata machines
Relocations + symbols:
a program in ABI for automaton to patch
images loaded at a different virtual address:

Wednesday, April 10, 13

R_X86_64_COPY:
memcpy(r.r_offset, s.st_value, s.st_size)
 R_X86_64_64:
*(base+r.r_offset) = s.st_value +
 r.r_addend + base
 R_X86_64_RELATIVE:
*(base+r.r_offset) = r.r_addend+base

Relocation arithmetic:

See 29c3 talk by Rebecca “.bx” Shapiro,
https://github.com/bx/elf-bf-tools

Wednesday, April 10, 13

https://github.com/bx/elf-bf-tools
https://github.com/bx/elf-bf-tools

Example for Today:

Page Fault Liberation Army
(PFLA)*

“Input is (still) a program!”

*) In the x86 manuals it stands for
“Page Faulting Linear Address”,

but our version is more interesting
Wednesday, April 10, 13

“Page Fault Liberation”

Let’s take an
old and known

thing...

Wednesday, April 10, 13

“Page Fault Liberation”

Wednesday, April 10, 13

“Page Fault Liberation”

...and see
how far we
can make it

can go!

Wednesday, April 10, 13

“Page Fault Liberation”

and perhaps
others can

take it
further!

Wednesday, April 10, 13

“Page Fault Liberation”

l The x86 MMU is not just a look-up table!

l x86 MMU performs complex logic on
complex data structures

l The MMU has state and transitions that
brilliant hackers put to unorthodox uses.

l Can it be programmed with its input data?

Wednesday, April 10, 13

“Hacking is a practical study of
computational models’ limits”

• [Apologies for repeating myself]

• “What Church and Turing did with
theorems, hackers do with exploits”

• Great exploits (and effective defenses!)
reveal truths about the target’s
actual computational model.

Wednesday, April 10, 13

CPU

MMU

IDT
GDT

Page
tables Stack

Read Write

Wednesday, April 10, 13

• unmapped/bad memory reference trap, based on
page tables & (current) IDT

• hardware writes fault info on the stack - where
it thinks the stack is (address in TSS)

• If we point “stack” into
page tables, GDT or
TSS, can we get the “tape”
of a Turing machine?

Wednesday, April 10, 13

The devil’s in the details
trapping bits

Wednesday, April 10, 13

From: duartes.org/gustavo/blog/

Global Descriptor Table
(GDT)

Default
segment
selector

Segment descriptor:

Address (”offset”)
must lie within
segment limit

Type

Wednesday, April 10, 13

0xDEADBEEFLinear Address:

1101111010 1110111011111011011011

37a 2db EEF

0x11111

0x1111 1EEF

Present

l All P bits set

l Ring 3: All U/S bits have to be set

l Write: All R/W bits have to be set

l What if we violate these rules?

Physical Address =

Virtual Address Translation

cr3 +
4*37a

0x10000

+ 4*2db

Wednesday, April 10, 13

ITS A TRAP

Wednesday, April 10, 13

OpenWall
• Solar Designer, 1999

• cf. "Stack Smashing for Fun and
Profit"

• CS limit is 3GB - 8MB (for
stack)

• Code fetch from the stack is
trapped

• See if the current instruction is a
RET

• Very specific threat, allows JIT, etc.

• (And many other hardening
patches)

Wednesday, April 10, 13

PaX
• PaX is an awesome Linux hardening patch

• Many 'firsts' on real-world OS's, e.g. NX on
Intel and ASLR (PaX in 2000, OpenBSD in
2003)

• PaX has NX on all CPUs since the Pentium
(Intel has hardware support since P4)

• SEGMEXEC and PAGEEXEC

• Leverages difference between
instruction and data memory paths

Wednesday, April 10, 13

PaX NX: SegmExec

• Instruction: Virtual address = Linear + CS.base

• Data: VA= Linear + {DS,ES,FS,GS,SS}.base

• 3GB user space

• Set all segment limits to 1.5 GB (so all pointers
are less than 1.5GB)

• Data access goes to lower half of VA space

• Instruction fetch goes to upper half of VA space

Wednesday, April 10, 13

PaX NX: PageExec

• “split TLB” (iTLB for fetches, dTLB for loads)
[Plex86 1997, to detect self-modifying code:
http://pax.grsecurity.net/docs/pageexec.old.txt]

• TLBs are not synchronized with page tables
in RAM (manually flushed every time tables change)

• NX ~ User/Supervisor bit

Wednesday, April 10, 13

http://pax.grsecurity.net/docs/pageexec.old.txt
http://pax.grsecurity.net/docs/pageexec.old.txt

PageExec data lookup

TLB Access

Pagetable

If U=1

Not found

#PF fault

Always U=0 in PTE

Terminate

if EIP=addr, instruction

Set user bit,
read one byte to

fill TLB,
clear user bit

Normal data

“Fast path”

Wednesday, April 10, 13

OllyBone:
Trap on end of unpacker

• Same TLB technique as PaX

• Debugger plugin to analyze (un)packers

• Want to break execution on a memory
range (so you trap every time you exec
after writing)

• The idea goes back to Plex86 (before PaX)
who tried to do virtualization that way

Wednesday, April 10, 13

ShadowWalker
• When a rootkit detector scans the code (as
data!), why not give a different page than
when the code is executed?

• Instead of having different User bits, we could
also have different page frame numbers
(trap on P=0 in pagetables)

Wednesday, April 10, 13

Trap-based “Design Patterns”
• Overloading #PF for security policy, labeling

memory (e.g., PaX, OpenWall)

• Combining traps to trap on more complex
events (OllyBone, “fetch from a page just written”)

• Using several trap bits in different locations
to label memory for data flow control (PaX
UDEREF, SMAP/SMEP use)

• Storing extra state in TLBs (PaX PageExec)

• “Unorthodox” breakpoints, control flow, ...

Wednesday, April 10, 13

What’s in a trap handler
(let’s roll our own)

Wednesday, April 10, 13

IDT
entries:

...
8: #DF

...
14: #PF

...

Wednesday, April 10, 13

Call through a Trap Gate
nested interrupts?32 bit?

New code segment

Like a FAR call of old. If the new segment is in a
lower (i.e. higher privilege) Ring, we load a new SP.

Wednesday, April 10, 13

Pushes parameters to
“handler’s stack”

These two are only pushed
 if we changed the stack

“IRET” instruction can return from this

ESP

Wednesday, April 10, 13

What if this fails?

• Stack invalid?

• Code segment invalid?

• IDT entry not present?

Causes “Double Fault”(#8). “Triple fault” = Reboot

Usually DF means OS bug, so a lot of state might be
corrupted (i.e. invalid kernel stack)

Wednesday, April 10, 13

Hardware Task Switching
Can use it for #PF and #DF traps instead of
Trap Gates

TR

Wednesday, April 10, 13

Task gate
• (unused) mechanism for hardware tasking

• Reloads (nearly) all CPU state from memory

• Task gate causes task switch on trap

Wednesday, April 10, 13

(addressed indirectly
 through GDT)

IDT-> GDT->TSS
It still pushes the error code

IDT

GDT

Wednesday, April 10, 13

Interrupt to Task Gate

1. Save state to location pointed to by TR

2. Find Task (GDT), validate + check Busy=0

3. Load new state

4. Push error code
Doublefault

Begin executing new EIP

Wednesday, April 10, 13

Brief digression
Intel Manual:

Wednesday, April 10, 13

Brief digression
Intel Manual:

Bypass (all) paging from the kernel?
VM Escape?

 Wouldn’t that be nice?

Wednesday, April 10, 13

Wednesday, April 10, 13

Maybe we should actually verify it..

CPU translates DWORD by DWORD

Wednesday, April 10, 13

(CC-BY-SA)Lizzie Bitty/DevianArt

Wednesday, April 10, 13

Look Ma, it’s a machine!

Wednesday, April 10, 13

A one-instruction machine
Instruction Format:
Label = (X <-Y,A,B)

Label:

 X=Y

 If X<4:

Goto B

 Else

X-=4
Goto A

• “Decrement-Branch-If-
Negative”

• Turing complete (!)

• ““Computer Architecture:
A Minimalist Perspective”
by Gilreath and Laplathe
(~$200)

• Or Wikipedia :)

Wednesday, April 10, 13

• If EIP of a handler is pointed at invalid
memory, we get another page fault
immediately; keep EIP invalid in all tasks

• Var Decrement: use TSS’ SP, pushing the stack
decrements SP by 4.

• Branch: <4 or not? Implemented by double
fault when SP cannot be decremented

Implementation sketch:

Wednesday, April 10, 13

Dramatis Personae I

• One GDT to rule them all

• One TSS Descriptor per instruction,
aligned with the end of a page

• IDT is mapped differently, per instruction

• A target (branch-not-taken) in Int 14, #PF

• B target (branch taken) in Int 8, #DF

Wednesday, April 10, 13

Dramatis Personae II

• Higher half of TSS (variables)

• Map A.Y, B.Y (the value we want to load
for next instruction) at their TSS
addresses

• map X (the value we want to write) at
the addr of the current task

• So we have the move and decrement

Wednesday, April 10, 13

• We split these TSS across
a page boundary

• Variables are stack pointer
entries in a TSS

• Upper Page: ESP and
segments

• Lower Page: EAX, ECX,
 EIP, CR3 (page tables)

Labels: A, B, C, ...

Wednesday, April 10, 13

Wednesday, April 10, 13

Let's step through an instruction
(Some details glossed over;

think of it as a fairy tale, not a lie)

Wednesday, April 10, 13

Label:

 X=Y

 If X<4:

Goto B

 Else

X-=4
Goto A

#PF/DF: “rising edge” of a clock tick

Instruction by the numbers
(or, “PFLA fetch-decode-execute” loop)

Saving old TSS state

Loading new TSS state

Attempt to save fault info to stack
(decrement ESP, write info to stack)

First instruction of new task:
causes #PF (new EIP is invalid, too)

Failure: #DF (decr ESP is invalid)
Success: (decr ESP, write info)

Wednesday, April 10, 13

IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Available

TSS 0

EIP,EAX, etc

SP:0x1000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

Initial State

Wednesday, April 10, 13

IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Available

TSS 0

EIP,EAX, etc

SP:0x1000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

EIP causes Pagefault

Wednesday, April 10, 13

IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Available

TSS 0

EIP,EAX, etc

SP:FFFF 0000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

CPU state is saved to current task
Wednesday, April 10, 13

IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Busy

TSS 0

EIP,EAX, etc

SP:FFFF 0000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

#DF

#PF

B

A

X

Y

CPU loads interrupt task
Wednesday, April 10, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Busy

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

SP:FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

New page tables
point to new things!

#DF

#PF

B

A

A.Y

X

(duplicate)

Wednesday, April 10, 13

“Implementation Problem”

Wednesday, April 10, 13

1 bit(ch) of a bit(ch)

CPU won’t load
task if this is set

Wednesday, April 10, 13

1 bit(ch) of a bit(ch)

CPU won’t load
task if this is set

We need to overwrite it. Luckily, the CPU always
saves all the state (even if not dirty).

So: map the lower half of TSS over GDT, so that
saved EAX,ECX from TSS overwrite descriptor;

same content, only busy bit cleared.

Wednesday, April 10, 13

Dealing with that bit
needs a nuclear

option...

Wednesday, April 10, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

#DF

#PF

B

A Lower half of TSS is
mapped over GDT descriptor

=>
saving the old state overwrites

 the GDT entry busy bit!
Wednesday, April 10, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP: 1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x1F8

#DF

#PF

B

A

#PF error code is pushed:
Decrements ESP

Wednesday, April 10, 13

IDT

8: Task 0x0F8

14: Task
0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Busy

TSS 2

EIP,EAX, etc

SP: 1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x1F8

#DF

#PF

B

A

Another Page Fault,
Saves state

Wednesday, April 10, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP: 0

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x0F8

#DF

#PF

B

A

But we can't push,
So #DF

Wednesday, April 10, 13

IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP: 0

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0x0F8

#DF

#PF

B

A

Loaded new state from #DF

Wednesday, April 10, 13

And now to face the uglier truth...

Wednesday, April 10, 13

IDT

8: Task 0x0F8

14: Task
0x2F8

GDT

0F8: Task,
Busy

1F8: Task,
Busy

2F8: Task,
available

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

SP:FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

IDT trick must take care of
task switch logic checking TR contents
=> must duplicate GDT descriptors

Wednesday, April 10, 13

Meanwhile, on the FSB

Write 0x8 0xFFFF 0000

Read 0x1008 0x4

Write 0x2008 0x0

Read 0x8 0xFFFF 0000

(Slightly redacted)

And they all compute happily ever after
(for all we know)

Wednesday, April 10, 13

What restrictions do we
have?

• Needs kernel access to set up :)

• No two double faults in a row

• Can only use our one awkward instruction

• Can only work with SP of TSS aligned
across page (very limited coverage of phys.
mem)

Wednesday, April 10, 13

Wednesday, April 10, 13

White Hat Takeaway

• Check how your tools handle old/unused
CPU features

• Don’t trust the spec

Wednesday, April 10, 13

Black Hat Takeaway

• A really nice, big Redpill

• With more work, you can probably make it
work differently in Analysis tools

• Or just shoot down the host

Wednesday, April 10, 13

Strawhat Takeaway

• It’s a weird machine! (And we like them)

• We are working on 64 bit, better tools

• Compiler, debugger

• See how it works on different hardware?

Wednesday, April 10, 13

“There is never enough time.
Thank you for yours!”

--Dan Geer

Wednesday, April 10, 13

“I have a dream”

• of a world where a hacker isn’t judged by
the color of his hat, but the weirdness of
his machine

• of a world where a single step in can
change your world completely

• of a world where we strive to understand
what dragons sleep in seemingly innocent
systems

Wednesday, April 10, 13

