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“No instructions were 
harmed in the making 

of this talk”
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Disclaimer

• Turing complete it’s just a way of 
describing what kind of computations an 
environment can be programmed to do
 (T.-c. = any kind we know, in theory)

• Wish we had a more granular scale 
better suited to exploit power
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Today’s
Slogan

         Any input is a program.

Any sufficiently complex input is indistinguishable from byte code; 
any code that takes complex inputs is indistinguishable from a VM.
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Intro Example:
ABI Metadata Machines

Sarah Inteman/John Kiehl
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LD.SO CODE 

ELF relocation machine
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ELF metadata machines
Relocations + symbols: 
a program in ABI for automaton to patch 
images loaded at a different virtual address:
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R_X86_64_COPY:
memcpy(r.r_offset, s.st_value, s.st_size)
  R_X86_64_64:
*(base+r.r_offset) = s.st_value + 
                     r.r_addend + base
  R_X86_64_RELATIVE:
*(base+r.r_offset) = r.r_addend+base

Relocation arithmetic:

See 29c3 talk by Rebecca “.bx” Shapiro, 
https://github.com/bx/elf-bf-tools
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Example for Today:
 

Page Fault Liberation Army 
(PFLA)*

“Input is (still) a program!”

*) In the x86 manuals it stands for
“Page Faulting Linear Address”, 

but our version is more interesting
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“Page Fault Liberation” 

Let’s take an 
old and known 

thing...
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“Page Fault Liberation” 
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“Page Fault Liberation” 

...and see 
how far we 
can make it 

can go!
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“Page Fault Liberation” 

and perhaps 
others can 

take it 
further!
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“Page Fault Liberation” 

l The x86 MMU is not just a look-up table!

l x86 MMU performs complex logic on 
complex data structures

l The MMU has state and transitions that 
brilliant hackers put to unorthodox uses.

l Can it be programmed with its input data?
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“Hacking is a practical study of 
computational models’ limits”

• [Apologies for repeating myself]

• “What Church and Turing did with 
theorems,  hackers do with exploits”

• Great exploits (and effective defenses!) 
reveal truths about the target’s 
actual computational model.
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CPU

MMU

IDT
GDT

Page
tables Stack

Read Write
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• unmapped/bad memory reference trap, based on 
page tables & (current) IDT

• hardware writes fault info on the stack - where 
it thinks the stack is (address in TSS)

• If we point “stack” into 
page tables, GDT or 
TSS, can we get the “tape” 
of a Turing machine?
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The devil’s in the details  
trapping bits
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From: duartes.org/gustavo/blog/

Global Descriptor Table
(GDT)

Default 
segment 
selector

Segment descriptor:

Address (”offset”) 
must lie within 
segment limit

Type
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0xDEADBEEFLinear Address:

1101111010 1110111011111011011011

37a 2db EEF

0x11111

0x1111 1EEF

Present

l All P bits set

l Ring 3:  All U/S bits have to be set

l Write:  All R/W bits have to be set

l What if we violate these rules?

Physical Address =

Virtual Address Translation 

cr3 + 
4*37a

0x10000

+ 4*2db
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ITS A TRAP
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OpenWall
• Solar Designer, 1999

• cf.  "Stack Smashing for Fun and 
Profit"

• CS limit is 3GB - 8MB (for 
stack)

• Code fetch from the stack is 
trapped

• See if the current instruction is a 
RET

• Very specific threat, allows JIT, etc.

• (And many other hardening 
patches)
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PaX
• PaX is an awesome Linux hardening patch

• Many 'firsts' on real-world OS's, e.g. NX on 
Intel and ASLR (PaX in 2000, OpenBSD in 
2003)

• PaX has NX on all CPUs since the Pentium 
(Intel has hardware support since P4) 

• SEGMEXEC and PAGEEXEC

• Leverages difference  between 
instruction and data memory paths
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PaX NX:  SegmExec

• Instruction:  Virtual address = Linear + CS.base 

• Data:  VA= Linear + {DS,ES,FS,GS,SS}.base

• 3GB user space

• Set all segment limits to 1.5 GB (so all pointers 
are less than 1.5GB) 

• Data access goes to lower half of  VA space

• Instruction fetch goes to upper half of  VA space
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PaX NX: PageExec

• “split TLB” (iTLB for fetches, dTLB for loads)
[Plex86 1997, to detect self-modifying code:
http://pax.grsecurity.net/docs/pageexec.old.txt] 

• TLBs are not synchronized with page tables 
in RAM (manually flushed every time tables change) 

• NX ~ User/Supervisor bit
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PageExec data lookup

TLB Access

Pagetable

If U=1

Not found

#PF fault

Always U=0 in PTE

Terminate 

if EIP=addr, instruction

Set user bit, 
read one byte to 

fill TLB, 
clear user bit

Normal data

“Fast path”

Wednesday, April 10, 13



OllyBone: 
Trap on end of unpacker

• Same TLB technique as PaX

• Debugger plugin to analyze (un)packers

• Want to break execution on a memory 
range (so you trap every time you exec 
after writing)

• The idea goes back to Plex86 (before PaX) 
who tried to do virtualization that way
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ShadowWalker
• When a rootkit detector scans the code (as 
data!), why not give a different page than 
when the code is executed? 

• Instead of having different User bits, we could 
also have different page frame numbers
(trap on P=0 in pagetables)
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Trap-based “Design Patterns”
• Overloading #PF for security policy, labeling 

memory (e.g., PaX, OpenWall)

• Combining traps to trap on more complex 
events (OllyBone, “fetch from a page just written”)

• Using several trap bits in different locations 
to label memory for data flow control (PaX 
UDEREF,  SMAP/SMEP use)

• Storing extra state in TLBs (PaX PageExec)

• “Unorthodox” breakpoints,  control flow, ... 

Wednesday, April 10, 13



What’s in a trap handler
(let’s roll our own)
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IDT
entries:

...
8:  #DF

...
14: #PF

...
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Call through a Trap Gate
nested interrupts?32 bit?

New code segment

Like a FAR call of old. If the new segment is in a 
lower (i.e. higher privilege) Ring, we load a new SP.
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Pushes parameters to 
“handler’s stack”

These two are only pushed
 if we changed the stack

“IRET” instruction can return from this 

ESP
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What if this fails?

• Stack invalid?

• Code segment invalid?

• IDT entry not present?

Causes “Double Fault”(#8). “Triple fault” = Reboot

Usually DF means OS bug, so a lot of state might be 
corrupted (i.e. invalid kernel stack) 
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Hardware Task Switching
Can use it for #PF and #DF traps instead of 
Trap Gates

TR
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Task gate
• (unused) mechanism for hardware tasking

• Reloads (nearly) all CPU state from memory

• Task gate causes task switch on trap
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(addressed indirectly
 through GDT)

IDT-> GDT->TSS 
It still pushes the error code

IDT

GDT
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Interrupt to Task Gate

1. Save state to location pointed to by TR

2. Find Task (GDT), validate + check Busy=0

3. Load new state  

4. Push error code
Doublefault

Begin executing new EIP

Wednesday, April 10, 13



Brief digression
Intel Manual:
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Brief digression
Intel Manual:

Bypass (all) paging from the kernel?
VM Escape?

 Wouldn’t that be nice?
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Maybe we should actually verify it..

CPU translates DWORD by DWORD
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(CC-BY-SA)Lizzie Bitty/DevianArt
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Look Ma, it’s a machine!
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A one-instruction machine
Instruction Format:
Label = (X <-Y,A,B)

Label:

   X=Y

   If X<4:

Goto B

 Else

X-=4
Goto A

• “Decrement-Branch-If-
Negative”

• Turing complete (!)

• ““Computer Architecture:  
A Minimalist Perspective” 
by Gilreath and Laplathe 
(~$200) 

• Or Wikipedia :)
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• If EIP of a handler is pointed at invalid 
memory, we get another page fault 
immediately; keep EIP invalid in all tasks

• Var Decrement:  use TSS’ SP,  pushing the stack 
decrements SP by 4.

• Branch:  <4 or not? Implemented by double 
fault when SP cannot be decremented

Implementation sketch:
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Dramatis Personae I 

• One GDT to rule them all

• One TSS Descriptor per instruction,  
aligned with the end of a page

• IDT is mapped differently, per instruction

• A target (branch-not-taken) in Int 14, #PF

• B target (branch taken) in Int 8, #DF
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Dramatis Personae II

• Higher half of TSS (variables)

• Map A.Y, B.Y (the value we want to load 
for next instruction) at their TSS 
addresses

• map X (the value we want to write) at 
the addr of the current task

• So we have the move and decrement
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• We split these TSS across 
a page boundary

• Variables are stack pointer 
entries in a TSS

• Upper Page:  ESP and 
segments

• Lower Page: EAX, ECX,
  EIP, CR3 (page tables)

Labels: A, B, C, ...
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Let's step through an instruction
(Some details glossed over; 

think of it as a fairy tale, not a lie)
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Label:

   X=Y

   If X<4:

Goto B

 Else

X-=4
Goto A

#PF/DF: “rising edge” of a clock tick 

Instruction by the numbers 
(or, “PFLA fetch-decode-execute” loop) 

Saving old TSS state

Loading new TSS state

Attempt to save fault info to stack
(decrement ESP,  write info to stack)

First instruction of new task:
causes #PF (new EIP is invalid, too)

Failure: #DF (decr ESP is invalid)
Success:  (decr ESP,  write info)
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IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Available

TSS 0

EIP,EAX, etc

SP:0x1000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

Initial State
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IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Available

TSS 0

EIP,EAX, etc

SP:0x1000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

EIP causes Pagefault 

Wednesday, April 10, 13



IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Available

TSS 0

EIP,EAX, etc

SP:FFFF 0000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0xF8

#DF

#PF

B

A

X

Y

CPU state is saved to current task
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IDT

8: Task 0x1F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Busy

TSS 0

EIP,EAX, etc

SP:FFFF 0000

TSS 1

EIP,EAX, etc

SP:0x4

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

#DF

#PF

B

A

X

Y

CPU loads interrupt task
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Busy

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

SP:FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

New page tables
point to new things!

#DF

#PF

B

A

A.Y

X

(duplicate)
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“Implementation Problem”
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1 bit(ch) of a bit(ch)

CPU won’t load 
task if this is set
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1 bit(ch) of a bit(ch)

CPU won’t load 
task if this is set

We need to overwrite it. Luckily, the CPU always 
saves all the state (even if not dirty).

So: map the lower half of TSS over GDT, so that 
saved EAX,ECX from TSS overwrite descriptor;

same content, only busy bit cleared.
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Dealing with that bit 
needs a nuclear 

option...
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task, 
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

#DF

#PF

B

A Lower half of TSS is 
mapped over GDT descriptor

=>
saving the old state overwrites

 the GDT entry busy bit!
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task,
Available

TSS 2

EIP,EAX, etc

SP: 1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x1F8

#DF

#PF

B

A

#PF error code is pushed:
Decrements ESP
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IDT

8: Task 0x0F8

14: Task 
0x1F8

GDT

0F8: Task,
Available

1F8: Task, 
Busy

TSS 2

EIP,EAX, etc

SP: 1234 5678

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x1F8

#DF

#PF

B

A

Another Page Fault, 
Saves state
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Busy

1F8: Task, 
Available

TSS 2

EIP,EAX, etc

SP: 0

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x0

TR: 0x0F8

#DF

#PF

B

A

But we can't push, 
So #DF
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IDT

8: Task 0x0F8

14: Task 0x1F8

GDT

0F8: Task,
Available

1F8: Task, 
Available

TSS 2

EIP,EAX, etc

SP: 0

TSS 0

EIP,EAX, etc

FFFF 0000

CPU

EIP:FFFF FFFF

SP:FFFF 0000

TR: 0x0F8

#DF

#PF

B

A

Loaded new state from #DF
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And now to face the uglier truth...
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IDT

8: Task 0x0F8

14: Task 
0x2F8

GDT

0F8: Task, 
Busy

1F8: Task, 
Busy

2F8: Task, 
available

TSS 2

EIP,EAX, etc

SP:1234 5678

TSS 0

EIP,EAX, etc

SP:FFFF 0000

CPU

EIP:FFFF FFFF

SP:0x4

TR: 0x1F8

IDT trick must take care of 
task switch logic checking TR contents
=> must duplicate GDT descriptors 
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Meanwhile, on the FSB

Write 0x8 0xFFFF 0000

Read 0x1008 0x4

Write 0x2008 0x0

Read 0x8 0xFFFF 0000

(Slightly redacted)

And they all compute happily ever after 
(for all we know) 
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What restrictions do we 
have?

• Needs kernel access to set up :)

• No two double faults in a row

• Can only use our one awkward instruction

• Can only work with SP of TSS aligned 
across page (very limited coverage of phys. 
mem) 
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White Hat Takeaway

• Check how your tools handle old/unused 
CPU features

• Don’t trust the spec
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Black Hat Takeaway

• A really nice, big Redpill

• With more work, you can probably make it 
work differently in Analysis tools 

• Or just shoot down the host
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Strawhat Takeaway

• It’s a weird machine! (And we like them)

• We are working on 64 bit, better tools

• Compiler, debugger

• See how it works on different hardware? 

Wednesday, April 10, 13



“There is never enough time. 
Thank you for yours!”

--Dan Geer
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“I have a dream”

• of a world where a hacker isn’t judged by 
the color of his hat, but the weirdness of 
his machine 

• of a world where a single step in can 
change your world completely

• of a world where we strive to understand 
what dragons sleep in seemingly innocent 
systems
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