
  

Orchestrating a fire sale

Bringing Dutch alarm systems to their knees

Wilco Baan Hofman



  

Wilco Baan Hofman
about me

● Reverse engineer
● Working at Nikhef
● Free / open source software developer
● Co-founder and treasurer of Bitlair



  

Background
or how I got involved

● Why are alarms only visible at the receiving 
centre?

● We wanted notifications and logs of all events, 
not just alarms

● Let's reverse engineer the protocols!



  

Protocol landscape
or what's out there

● Legacy/Analog:
● ANSI SIA
● ANSI X/SIA
● Ademco ContactID

● IP:
● SIA-HS (Alphatronics proprietary)
● Vebon SecIP (Proposed Dutch standard)
● Chiron protocol (Chiron proprietary)
● Ademco IP protocol (Pitt/Ademco/Honeywell proprietary)
● ANSI/SIA IP DC-09 (USA standard)
● VDS 2465-S2 (German standard)



  

The problem
or how hard is it to crack?

● Fatal assumptions are made
● Fatal mistakes are made



  

Assumption 1

The internet can be secured by certifying ISPs



  

Assumption 2

Internet source addresses can be trusted



  

Assumption 3

In a session, every packet is from the same peer



  

Assumption 4

Nobody can decode obfuscated packets

“... IP protocol fitted with text in a data format with dynamic data encryption 
which makes it impossible to decipher the message.” 

--- Alphatronics Product Catalog



  

Assumption 5

If my product is certified, it is secure

“Alphatronics emphasizes that the uncovered vulnerabilities do not influence 
the product certification.”

--- Alphatronics security bulletin to customers



  

Assumption 6

If nobody knows the protocol format, nobody can 
decipher the messages



  

Assumption 7

If my peer speaks the same protocol, it must be valid 
peer



  

Assumption 8

Encryption is enough to make a connection secure



  

Assumption 9

Giving an alarm receiving centre the option to disable 
encryption will not lead to insecure deployments



  

Assumption 10

Alarm system electronics engineers can design secure 
internet protocols



  

Alarm dialer basics
or what's that word again?

● ATE: Alarm Transmit Equipment
● ARC: Alarm Receiving Centre
● PROM: Unique account code for a building
● ATE sends alarms, ARC sends ACKs
● SIA codes

● BA: Burglary Alarm, BR Burglary restore, etc



  

SIA-HS
or SIA “highly secure”

● Protocol by Alphatronics
● Impossible to decipher according to the catalog
● Let's see how secure it really is...?



  

The packet



  

XOR 0xB6?

#!/usr/bin/env python

bytes = 
bytearray("000000340101c5fff7f5eefa96879881b6b6b6b6b6a4e3b79ab7b6b6b6b
6b6b6b6b6e4f3f1ffe5e2e4f7e2fff9f896e4f3e7e3f3e5e226fd".decode('hex_cod
ec'))

for i in range(len(bytes)):
    bytes[i] ^= 0xB6

print bytes
print bytes.encode('hex_codec')



  

Why? Yes!

������sIACXL 1.7U,REGISTRATION 
REQUEST K�

b6b6b682b7b773494143584c20312e37000000
00001255012c01000000000000000052454749
5354524154494f4e2052455155455354904b



  

But wait..



  

XOR 0x85?

● Yes indeed:

��� RCIPv2.4U REGISTRATION Ǆ� �
RENEWAL AT PORT 04008 o�

858585c7848405055243495076322e34000000
00001255001e03840300000000000052454749
5354524154494f4e2052454e4557414c204154
20504f5254203034303038af6f



  

Recap

● So we have:
● UnXORed packet length
● Device name
● Decimal PROM number encoded as if it were hex
● Message
● Checksum



  

The checksum

● Days of trying different algorithms... 
● I tried every known CRC-10 to CRC-16 algorithm
● Different preseed values

● But wait.. 
● longer packets give generally higher checksums

– … Must be multiplication or addition
● OMFG? Really!? 16-bit sum of all preceeding bytes

● D'OH!



  

My implementation
Bitlair's siahsd

● Full SIA-HS ARC implementation
● Full Vebon SecIP ARC implementation
● Pluggable handlers:

● Database event logging
● JSONBOT IRC Event notification

● Chiron IrisTouch implementation in progress



  

IRC in action



  

Protocol design
or how to make it secure?

Remember, protocol security requires at least:
● Protection from packet injection
● Strong cipher
● Identity verification
● Forward secrecy



  

Security
How bad can it be?

● No identity verification
● No session protection 
● Predictable interaction between ARC and ATE

● UDP packet's source easy to spoof

● Predictable PROM codes 
● Sequential, True for all protocols



  

Implications
or what can I do with this?

● Man-in-the-middle
● Send false alarms

● … while remaining anonymous

● Denial of Service on the alarm centre ops
● Denial of Service on the police response
● Fire Sale?!



  

SIA-HS Security
The verdict

Everyone can trigger alarms for ALL of the ARC's 
customers without revealing their own IP



  

Vebon SecIP
Attempts to do it better

● Handshake:
● RSA 1024 bit, public key sent to the ATE
● ATE uses the public key to transfer the AES-128 

session key
● AES communication channel is up

● Secure, right?



  

Not really

● If done correctly, there'd be a secure channel
● … but to whom?



  

Vebon SecIP
The verdict

● No identity verification
● Man in the Middle attack
● Send false alarms from anywhere

● Insecure cryptographic padding
● Chosen cipher-text attack

● No forward secrecy
● Have the private key, decrypt entire event history



  

Responses
Or what happened since the report

● First report for SIA-HS august 2012: no response
● First report for SecIP in september 2012: no response
● Small scale publication at hitr2ndb
● Then in January 2013

● Asked NCSC for help
● NCSC assigned a coordinator
● Alphatronics asked me to remove publication
● Vebon and ENAI responded well, hired Certified Secure and 

Pine Security to fix SecIP
● Chiron offered a properly configured ARC to aid testing



  

So what now?
Or how to fix?

● Upgrading all the firmwares
● Mitigating attacks by isolating customers on 

insecure protocols



  

Summary

● Code on github: http://github.com/bitlair/siahsd
● Ask me for more specs on other protocols!
● Give me more dialers with different protocols!



  

Thank you

● Please check out other projects I'm working on
● Spacefed → Federated authentication for 

hackerspaces
● Bitlair → Hackerspace Amersfoort
● OHM2013 → The next big Dutch hacker camp


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

