
SWIPING THROUGH MODERN
SECURITY FEATURES

HITB Amsterdam, April 11th, 2013

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REACHING THE KERNEL

• Run unsigned code outside the sandbox

• Get around ASLR

• Take control of the kernel

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REACHING THE KERNEL

• Run unsigned code outside the sandbox

• Get around ASLR

• Take control of the kernel

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

RUNNING CODE OUTSIDE
THE SANDBOX

• Disable code signing

• Convince launchctl/launchd to run a
program as root

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

iOS 6.1 launchctl HARDENING

• LaunchDaemons are now loaded from the signed
dyld cache.

• LaunchDaemons on the filesystem are ignored.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

launchctl 6.1 WEAKNESSES

• /etc/launchd.conf is still available

• Used for jailbreaks since Corona untether

• /etc/launchd.conf able to execute any launchd
command (with the exception of loading filesystem
LaunchDaemons).

• bsexec can run arbitrary programs.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

RUNNING UNSIGNED
CODE

• Write to root file system (specifically
/etc/launchd.conf)

• Disable code signing

• Convince launchctl/launchd to run a
program as root

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

RUNNING UNSIGNED
CODE

• Write to root file system (specifically
/etc/launchd.conf)

• Disable code signing

• Convince launchctl/launchd to run a
program as root

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

EVASI0N INJECTION
Remounting the root filesystem without being root
and putting the evasi0n untether payload in place

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

INJECTION STEPS

• Remount root filesystem

• Write /etc/launchd.conf

• Upload evasi0n untether payload

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REMOUNTING ROOT FS

• launchctl can be used to make launchd run
commands

• Uses control socket /var/tmp/launchd/sock

• But only root has access to that socket
-- unless we change the permissions

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REMOUNTING ROOT FS

• We need to:

• execute launchctl command

• change launchd control socket permissions
(since we're not root)

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

EXECUTING LAUNCHCTL

• We can run a command with the tap of an icon
by replacing an app binary with a shell script
containing a specific shebang:

#!/bin/launchctl

• To not mess up any existing app we use one of the
hidden apps for our purpose
➔ DemoApp.app

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

ADDING EVASI0N ICON

• Adding an app requires modification of
/var/mobile/Library/Caches/
com.apple.mobile.installation.plist

• holds state of all apps (also system apps)

• not accessible using AFC

• not included in backup

• luckily the file_relay service can be used to
retrieve it

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

/var/mobile/Library/Caches/com.apple.mobile.installation.plist

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

ADDING EVASI0N ICON

• Now, we need to write back
com.apple.mobile.installation.plist

• file_relay service does not provide upload
functionality

• Write anywhere vulnerability required
➔ MobileBackup2 directory traversal

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

ABOUT MOBILEBACKUP2

• MobileBackup2 has a set of backup domains

• Backup domains define 'allowed' paths

• Adding arbitrary files is not possible everywhere

• But there are several usable paths, e.g.
MediaDomain:Media/Recordings
(/var/mobile/Media/Recordings)

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

ABOUT MOBILEBACKUP2

• Backup restore process changed with iOS 6

• Files are created in /var/tmp, staged (renamed)
to another directory in /var, and finally
renamed to its destination

• Obviously limits writing files to /var partition since
rename doesn't work across filesystems

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

DIRECTORY TRAVERSAL

• For accessing a path outside the allowed ones
we just add a symlink to the backup, e.g.:
 Media/Recordings/haxx
with haxx pointing to /var/mobile

• When the backup is restored, MB2 restores
 Media/Recordings/haxx/DemoApp.app
but it actually writes
 /var/mobile/DemoApp.app

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

ADDING EVASI0N ICON

• So to finally add the icon we use MB2 to write
what we need:

/var/mobile/Library/Caches/
 com.apple.mobile.installation.plist
/var/mobile/DemoApp.app
/var/mobile/DemoApp.app/DemoApp
/var/mobile/DemoApp.app/Info.plist
/var/mobile/DemoApp.app/Icon.png
/var/mobile/DemoApp.app/Icon@2x.png
...

• Reboot device...

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

EXECUTING LAUNCHCTL

• The replaced DemoApp binary we just injected
with MB2 is a script with the following shebang:

#!/bin/launchctl submit -l remount
 -- /sbin/mount -v -t hfs -o rw /dev/
disk0s1s1

• But wait! where's the mount point parameter?

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

EXECUTING LAUNCHCTL

• The icon tap will result in the app's path being
appended as last parameter to the command line

• Mount target is app ‘binary’ at first, so mount
fails initially

• To resolve this we just replace the DemoApp
'binary' with a symlink (using MB2):

 /var/mobile/DemoApp.app/DemoApp -> /

• Since launchd restarts the job automatically the
remount should succeed after a while

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REMOUNTING ROOT FS

• We need to:

• execute launchctl command

• change launchd control socket permissions
(since we're not root)

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

CHANGING PERMISSIONS

• Why not use MB2 directory traversal?

• MB2 doesn’t allow changing permissions
on existing files - just re-creating them

• MB2 can’t create socket files

• ... but we still need MB2 to help out

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

TIMEZONE VULNERABILITY

• Flaw in lockdownd:

• chmod("/private/var/db/timezone", 0777);

• no further checks

• executed every launch

jeudi 11 avril 13

file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg
file://localhost/Users/nikias/Downloads/Symbol_thumbs_up_color.svg

@evad3rs Swiping through modern security features, HITB, AMS 2013

TIMEZONE VULNERABILITY

• Use MB2 directory traversal to add
 /var/db/timezone symlink
pointing to the file to chmod

• Crash lockdownd by sending a malformed
property list to make it relaunch and perform
the actual chmod

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REMOUNTING ROOT FS

• We need to:

• execute launchctl command

• change launchd control socket permissions
(since we're not root)

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

INJECTION STEPS

• Remount root filesystem

• Write /etc/launchd.conf

• Upload evasi0n untether payload

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

WRITING launchd.conf

• To write the /etc/launchd.conf we could just use
the MB2 directory traversal, couldn’t we?

• As mentioned earlier MB2 does not allow
restoring files outside /var

• Unlike regular files MB2 creates symlinks
directly in the staging directory

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

WRITING launchd.conf

• Allows to create a symlink /etc/launchd.conf
whilst creating it as a regular file will fail

• launchd will still load the file pointed to by the
/etc/launchd.conf symlink on startup

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

INJECTION STEPS

• Remount root filesystem

• Write /etc/launchd.conf

• Upload evasi0n untether payload

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

UPLOADING EVASI0N
PAYLOAD

• Since we already have the MB2 directory traversal,
we just use it to upload the untether payload to
the unique location /var/evasi0n

• Finally we use AFC to upload the Cydia package to
/var/mobile/Media/evasi0n-install

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

INJECTION STEPS

• Remount root filesystem

• Write /etc/launchd.conf

• Upload evasi0n untether payload

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REBOOT TO UNTETHER!

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

iOS CODE SIGNING
Weaknesses

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

PROTECTIONS

• when loading binaries

• when accessing executable pages

• when accessing signed pages

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

SIGNED PAGE ACCESS

• Enforced in vm_fault_enter

• Dependent on “CS blobs” being registered by
loader.

• Blobs indicate ranges of the file/vnode that is
signed and their hashes.

• No blobs loaded? No checking is done.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

EXECUTABLE PAGE ACCESS

• Enforced in vm_fault_enter

• If a process tries to access an executable page that
is not signed it is killed.

• (depending on CS_KILL, but it is set for every
single binary on iOS)

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

LOADING CODE

• Code loaded through two primary paths:

• Executables are loaded by kernel

• dylibs are loaded by dyld

• Each path has to validate what they load is signed
separately.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

LOADING A BINARY

• Kernel gets an execve syscall. MAC hooks for
the AMFI kext are set in this method call tree.

• mpo_vnode_check_exec is called which sets
CS_HARD and CS_KILL

• Kernel loads CS blobs from Mach-O

• mpo_vnode_check_signature calls amfid, a
userland daemon, to do the validation

• If signature checking fails, kernel kills the process

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

LOADING A DYLIB

• If a dylib being loaded is code signed, its blobs are
loaded into the CS blobs for the current process.

• dyld calls fcntl(F_ADDFILESIGS)

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

jeudi 11 avril 13

amfid libmis.dylib

uip->cs_blobs

fcntl(F_ADDFILESIGS)

kernel

vm_fault_enter

execve CS_KILL

DEPENDENCIES

dyld

com.apple.driver.AppleMobileFileIntegrity

mpo_vnode_check_signature mpo_vnode_check_exec

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

AMFID

• All binaries shipped with iOS have hashes in the
kernel.

• No chicken-and-egg problem with amfid loading.

• amfid uses a library (libmis.dylib) to verify the code
signature on binaries.

• If it passes, amfid replies to the kernel, and kernel
continues loading the binary.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• CS blobs are validated in amfid, outside the
kernel.

• As long as amfid gives permission, the kernel
accepts any CS blob as valid.

WEAKNESSES

jeudi 11 avril 13

amfid libmis.dylib

uip->cs_blobs

fcntl(F_ADDFILESIGS)

kernel

vm_fault_enter

execve CS_KILL

dyld

com.apple.driver.AppleMobileFileIntegrity

mpo_vnode_check_signature mpo_vnode_check_exec

weak part

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

RUNNING UNSIGNED
CODE

• Write to root file system (specifically
/etc/launchd.conf)

• Convince amfid to okay our program

• Convince launchctl/launchd to run a
program as root

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

DYLIB LOADING

• dyld takes care of loading the dependent libraries
in Mach-O.

• dyld also handles dlopen and other dynamic
loading calls.

• dyld runs inside the process using it, so it has only
the permissions every process has.

• Conversely, every process has to be able to do
what dyld can do.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

CAN WE LOAD UNSIGNED
DYLIBS?

• dyld tries to prevent this by requiring the Mach-O
header of dylibs to be executable.

• Accessing unsigned executable pages causes the
process to die.

• Note: you cannot step around this with no code
segments... there has to be at least one.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REQUIRES MACH-O HEADER
TO BE EXECUTABLE?

• Actually, it requires any load command segment
that spans the file offsets where the Mach-O
header is to:

• Span at least the entire Mach-O header file
offsets.

• Be executable.

• And there must be at least one such segment.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• Who says the Mach-O header
actually used by dyld has to be at
the front of the file?

OF COURSE...

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

NOW WHAT?

• We can override functions!

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• We can just override MISValidateSignature to
always return 0!

verify_code_directory
amfid

MISValidateSignature
libmis.dylib

AMFI kext
Kernel

execve
Kernel

INTERPOSITION

jeudi 11 avril 13

amfid libmis.dylib

uip->cs_blobs

fcntl(F_ADDFILESIGS)

kernel

vm_fault_enter

execve CS_KILL

FAIL!

dyld

com.apple.driver.AppleMobileFileIntegrity

mpo_vnode_check_signature mpo_vnode_check_exec

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

RUNNING UNSIGNED
CODE

• Write to root file system (specifically
/etc/launchd.conf)

• Convince amfid to okay our program

• Convince launchctl/launchd to run a
program as root

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

DISABLED CODE SIGNING

• Using a « simple » dylib with no executable pages,
we interposed the daemon responsible of the code
signing enforcement

• It didn’t require any memory corruption at the
userland level

• The whole code signing design is so complicated
that it had to be logical mistakes

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

REAL WORLD EXAMPLE

evasi0n’s /etc/launchd.conf

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

THE BOSS FIGHT
Enough sneaking around.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

EVASI0N BINARY

• 5001 lines of slightly over-engineered C and
Objective-C code

• 1719 lines for dynamically finding offsets.

• 876 lines for exploit primitives.

• 671 lines for main exploit logic/patching.

• 318 lines for primitives using task_for_pid
0 after it is enabled.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• USB -- the eternal source of vulnerabilities

• IOUSBDeviceInterface has not just one, but
two useful vulnerabilities

• evasi0n creates some exploit primitives from these
two vulnerabilities

• These primitives are then combined to implement
the remaining kernel exploits

KERNEL VULNERABILITIES

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

KERNEL VULNERABILITIES

• stallPipe (and others) naively takes a pointer to a kernel
object as an argument.

• createData returns a kernel address as the mapToken.

 http://iphonedevwiki.net/index.php?title=IOUSBDeviceFamily

jeudi 11 avril 13

http://iphonedevwiki.net/index.php?title=IOUSBDeviceFamily
http://iphonedevwiki.net/index.php?title=IOUSBDeviceFamily

@evad3rs Swiping through modern security features, HITB, AMS 2013

KERNEL VULNERABILITIES

• stallPipe (and others) naively takes a pointer to a kernel
object as an argument.

• createData returns a kernel address as the mapToken.

 http://iphonedevwiki.net/index.php?title=IOUSBDeviceFamily

Oh, come on...

jeudi 11 avril 13

http://iphonedevwiki.net/index.php?title=IOUSBDeviceFamily
http://iphonedevwiki.net/index.php?title=IOUSBDeviceFamily

@evad3rs Swiping through modern security features, HITB, AMS 2013

EXPLOITING stallPipe

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

EXPLOITING stallPipe

• stallPipe can be misused to call arbitrary functions

• We’ll need to craft an object that:

• Is accessible from the kernel (i.e. in kernel
memory)

• Exists at an address known to us

• Also need to know the address of the function
we’ll use it with

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• Kernel can no longer directly access userland
memory in iOS 6!

• In previous iOS versions, we could (and did)
merely malloc an object in userland and provide
it to stallPipe

• KASLR makes it challenging to find objects in
kernel memory, let alone modify them

• KASLR makes it hard to find what to call

Not so fast!
iOS6 mitigations...

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• createData creates an IOMemoryMap and gives us
its kernel address

• Like all IOKit objects, it’s in a kalloc zone

• Because of IOMemoryMap’s size, it is always in kalloc.
88

• If we call createData enough times, a new kalloc.88
page will be created, and future allocations will be
consecutive in the same page

• Then we can predict the address of next allocation in
kalloc.88

Evading mitigations with
createData

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• What can we do with the address of the next
allocation in kalloc.88?

• Deliberately trigger an allocation using the
mach_msg OOL descriptors technique
described by Mark Dowd and Tarjei Mandt at
HITB2012KUL

• We can then control the contents of kernel
memory at a known location

Evading mitigations with
createData

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

WRITING TO KERNEL

• Send mach msgs with
OOL memory
descriptors without
receiving them.

• Small OOL memory
descriptors will be
copied into kernel
memory in kalloc’ed
buffers.

• Buffers will deallocate
when message received

vm_map_copy_t

our data

vm_map_copy_t

our data

...

OOL 1

OOL 2

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

A TIGHT SQUEEZE

• kalloc.88 has 0x58 bytes

• vm_map_copy_t has 0x30 bytes

• We can only write 0x28 bytes

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

call_indirect: Call function with referenced argument

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

WHAT TO CALL?

• Need to get around KASLR.

• iOS 6 feature that shifts the start of the kernel by
a randomized amount determined by the
bootloader.

• Only need to leak address of one known location
to get around it.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

KASLR WEAKNESS?

• Exception vectors are not moved: They’re always at
0xFFFF0000.

• The code there hides all addresses.

• Exception handlers are in processor structs.
Pointers to them are in thread ID CPU registers
inaccessible from userland.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

WEIRD EFFECTS

• With another KASLR workaround and IOUSB
bug, you can leak kernel memory of unknown
kernel one dword at a time through panic logs.

• Didn’t work on iPad mini for some reason: CRC
error.

• Tried to jump to exception vector to see if that
helps.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

JUMPING TO DATA ABORT

• Kernel didn’t panic!

• Program crashed instead!

• Crash log seemed to contain the KERNEL thread
register state!

• Why?

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• How does XNU distinguish userland crashes from
kernel mode crashes?

• CPSR register in ARM contains the current
processor state, include ‘mode bits’ which
indicate User, FIQ, IRQ, Supervisor, Abort,
Undefined or System mode.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• ARM has a banked SPSR register that saves CPSR
when an exception occurred.

• e.g. when a data abort occurs, current CPSR is
saved to SPSRABRT before data abort handler is
called.

• Of course, the instruction to read any of the
SPSR registers is the same.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• XNU tries to check what the CPSR during the
exception was.

• If mode is 0, CPSR was user, crash the current
thread.

• If mode is not 0, CPSR was system, panic the
system.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• If you jump to data abort directly, SPSR is not
SPSRABRT, it is SPSRSVC which contains the CPSR
when the stallPipe syscall was called!

• Mode bits of SPSR is therefore 0. The kernel
believes the user thread just crashed and
dutifully dumps the kernel registers as if they
were user registers.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• More precisely, it calls the exception handlers you
can register from userland.

• CrashReporter is such a handler.

• We can also register a handler for an individual
thread, and catch the ‘crashes’ for that thread.

CUSTOM HANDLER

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

EVIL SHENANIGANS

• ‘Crash’ the kernel once from stallPipe, get the
address of stallPipe_1!

• KASLR defeated.

• ‘Crash’ using call_indirect and dereferenced
value of an address of our choosing is in R1, which
we can read!

• Kernel read-anywhere.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

CAVEAT

• Each ‘crash’ leaks one object from kalloc.6144.

• Do it too much and you’ll panic.

• Caused by how IOConnectCall works.

• Each call is actually a mach msg to the IOKit
server: MIG call to io_connect_method_*

• ipc_kobject_server is eventually called by
mach_msg to dispatch it. It allocates a large
ipc_kmsg for the error reply and saves the
pointer on the stack.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• When the ‘crash’ happens, the thread exits through
thread_exception_return from the data
abort handler instead of unwinding normally.

• Stack pointer lost forever!

• 226 lines of code to manually search kalloc
zones for lost ipc_kmsg and deallocate it.

• Normally just need one ‘crash’ per boot, so only
leak 6144 bytes per boot -- not too bad.

• So why fix it?

• Because @planetbeing is OCD.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

WRITE-ANYWHERE PRIMITIVE

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

READ-ANYWHERE PRIMITIVE (SMALL)

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• Corrupt one of the OOL descriptor’s vm_map_copy_t structure
so that it is tricked into giving us back a copy of arbitrary kernel
memory.

• Also one of Mark Dowd and Tarjei Mandt’s ideas from
HITB2012KUL

READ-ANYWHERE PRIMITIVE (LARGE)

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• If we use call_direct on memmove, first
argument of memmove points to &table[4].

• If we write past the vm_map_copy_t buffer, we
will hit the vm_map_copy_t structure for the
last OOL descriptor we allocated (since kalloc
allocates from bottom of page, up).

• We allocate 20 OOL descriptors. Previously, it
didn’t matter which one the kernel actually used.
Now it does.

OOL CORRUPTION

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• Find index of OOL descriptor
KernelBufferAddress points to by doing a
read using the small kernel read anywhere
primitive.

• The OOL descriptor with contents that does
not match the others is the one that
KernelBufferAddress points to.

OOL CORRUPTION

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

OOL 19 vm_map_copy_t

OOL 19 data

...

OOL KernelBufferIndex + 1 vm_map_copy_t

Fake vm_map_copy_t data!

OOL KernelBufferIndex vm_map_copy_t

Fake pipe object

OOL KernelBufferIndex - 1 vm_map_copy_t

Fake pipe object

...

OOL 0 vm_map_copy_t

OOL 0 data

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

OOL 19 vm_map_copy_t

OOL 19 data

...

OOL KernelBufferIndex + 1 vm_map_copy_t

Fake vm_map_copy_t data!

OOL KernelBufferIndex vm_map_copy_t

Fake pipe object

Fake vm_map_copy_t data!

Fake pipe object

...

OOL 0 vm_map_copy_t

OOL 0 data

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

PUTTING IT ALL TOGETHER

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• Wait for IOUSBDeviceClient driver to come
up.

• Crash kernel once using
call_indirect(data abort) and thread
exception handling to get current boot’s offset of
stallPipe_1. Calculate KASLR offset.

• Load cached memmove offset or find memmove
by reading default_pager() function (always
first function in iOS XNU) and looking for
memset. memmove is right above memset.

• Load other cached offsets or use memmove in
more reliable read-anywhere primitive to
dynamically find them.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• Get around kernel W^X by directly patching kernel
hardware page tables to make patch targets in
kernel text writable.

• Call kernel flush TLB function.

• Requires kernel-read anywhere to walk tables.

• Patch task_for_pid to enable task_for_pid
for PID 0 (kernel_task) to be called.

• Install shell code stub to syscall 0 to avoid using
IOUSB again due to potential race conditions with
kalloc’ed mach_msg OOL descriptors.

• Do rest of the patches using vm_write/vm_read
calls. Use shell code stub to flush caches, etc.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

• Clean up

• Fix the kalloc leak from jumping to the
exception vectors.

• Stick around until USB device descriptors fully
initialized.

• Due to sloppy programming of the driver, USB
device descriptors must be configured before
the first driver user client is shut down, or
they can never be configured again.

jeudi 11 avril 13

@evad3rs Swiping through modern security features, HITB, AMS 2013

IMPROVEMENTS FOR THE
FUTURE

• Reusable patch finding routines that make it easier
to find needed offsets in the era of PIC

• https://github.com/planetbeing/ios-jailbreak-
patchfinder

• Internationalized jailbreak software to serve the
growing non-English speaking jailbreak community.

jeudi 11 avril 13

https://github.com/planetbeing/ios-jailbreak-patchfinder
https://github.com/planetbeing/ios-jailbreak-patchfinder
https://github.com/planetbeing/ios-jailbreak-patchfinder
https://github.com/planetbeing/ios-jailbreak-patchfinder

