
Exploiting browsers
the logical way

BY BAS VENIS

@BUGROAST
BAS.VENIS@GMAIL.COM

https://linkedin.com/in/basvenis
https://linkedin.com/in/basvenis
https://twitter.com/bugroast
https://twitter.com/bugroast
mailto:bas.venis@gmail.com

Whoami?

 Bas Venis

 18 year old Security Researcher for (mostly) fun

 Found multiple vulnerabilities in Flash & Chrome in the last 2
years

Introduction

 Exploiting browser.. what way?

 What’s different about logic exploits?

 Err, ain’t nobody got time for that?

Hacking Google Chrome

 First vulnerability I’ve ever found

 First exploit I’ve ever written

 Ok, I want to find a vulnerability
Where the .. do I start?

URL Spoof Vulnerability

 Opening a window in JavaScript:

 Accessing the window object:

URL Spoof Vulnerability

 Blocking JavaScript functions:
alert, prompt, confirm and… print?

 alert, prompt, confirm block user interaction with the window

 But print does not

URL Spoof Vulnerability

 What happens when we put a blocking function in the script?

URL Spoof Vulnerability

Result:

 CVE-2013-6636

 Took 2 days to find + report & poc

 https://www.youtube.com/embed/8GL1LKg-xUQ

https://www.youtube.com/embed/8GL1LKg-xUQ

Recap

 No scanning / fuzzing tools used whatsoever.

 JavaScript + HTML for PoC

 Not sued, no jail, yet

Starting research on Flash Player

 This tactic couldn’t possibly work another time, I just got lucky..
right?

 Read some useful info on same origin policy and took a quick
look at Flash Player Sandboxes

Flash sandbox, some useful info

 Flash Security.sandboxType modes:

 Security.REMOTE
 Security.LOCAL_WITH_FILE
 Security.LOCAL_WITH_NETWORK
 Security.LOCAL_TRUSTED
 Security.APPLICATION (AIR)

Security.LOCAL_WITH_FILE

 Full read access to almost any file on disk

 No network access from inside the Flash applet

 Can navigate to another window / open another window.. But:

- Only on same origin (or rather, file:// path in this case)

- ?GETparameters=stripped

- #anchors are stripped

 We can read data, but we cannot phone home to evil.com

 Now what?

 Security.sandboxType

Let’s talk about browser quirks

 In chrome, we see a couple quirks worth mentioning when
opening file:// URI’s

 Extra slashes are ignored in file paths.

 file:///C:/Users/Bob/test.html
file:///C:\Users\Bob/\test.html
file:///C:/Users/Bob////test.html
all get fixed to: file:///C:/Users/Bob/test.html

file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html
file:///C:/Users/Bob/test.html

Let’s talk about exfiltration
patterns

 encodeURIComponent("\\/\\/") == “%5C%2F%5C%2F”

 file:///C:/Users/Bob/%5C%2F%5C%2Ftest.html stays intact.

 Now we can ‘tattoo’ a link with some binary pattern

 Who needs a GET parameters or anchor anyway?

file:///C:/Users/Bob/
file:///C:/Users/Bob/test.html

Exfiltrating files out of the
sandbox

 Encode to base64 -> to binary pattern -> urlencode

 Get own location from loaderInfo.loaderURL

 Apply “\” + pattern before last slash

 Navigate, to ‘tattooed’ link

 “Ex File Tration”?

Learning exploits new tricks

 That’s not good enough?

 Touché Evans, let’s handle that:

 Well yes.. That works.

Learning exploits new tricks

 That’s still not good enough?

 Let’s compile the whole PoC in one file. Originally 4 files

1. Data ‘catcher’: decodes the patterns, and saves to localStorage

2. Embedder: embeds the swf payload with the correct flashvars
using parameters defined in get parameters

3. Payload: swf payload, read flash vars to read (specified) part of file

4. Dispatcher: iframe-frame “embedder” dynamically in page, track
and reconstruct all parts from localStorage

All compiled into one poc.html, with data: URI

FlashVars

Learning exploits new tricks

Finishing touches

 Let’s escalate our ‘local’ read permissions to your remote Gmail
feed.

 Remote file is now local, read it from the local disk.
https://www.youtube.com/watch?v=a_h9BTUElG8

 Reported and fixed mitigated?

https://www.youtube.com/watch?v=a_h9BTUElG8
https://www.youtube.com/watch?v=a_h9BTUElG8

Recap

 Learned how to write reasonably complicated multi-part exploits.

 Escalated impact by chaining to other flaws

 First Adobe Flash vulnerability CVE-2014-0508

“But local exploits are lame”

 Goals:
Link more logic bugs/vulnerabilities together
Get higher severity vulnerability
Get more bounty

 Back to the data:text/drawingboard,<h1>Oh well</h1>

Break IN the local sandbox

 Hmm, say I embedded a applet with: data:application/x-shockwave-flash
embedded by a html file on data:text/html..
What sandbox mode should it be?

 Well.. Flash assigns it the ‘Security.LOCAL_WITH_FILE’ sandbox.

Break OUT of the local sandbox

 So we can access your local files again when you are visiting my
http://unsafe.org

 We got in.. how do we get out again?

 How does flash determine what file is on corresponds to what
type of origin, voodoo?

 Oh, just hardcoded to the ‘file://’ pattern?

http://unsafe.org/

Break OUT of the local sandbox

 Well, what about https:/www.google.com , that must be invalid
right.

 Google Chrome ‘patches’ it to https://www.google.com

 And.. flash assumes it’s a local file

 So we can now start stealing all your files, documents, pictures..

https://www.google.com/
https://www.google.com/

PIT STOP

 Err, not so fast.. Let’s grab some candy first.

 These requests share the same cookies as the users browser’s
session.

 Using the same flaw, we can get
https://mail.google.com/mail/u/0/feed/atom

 (or actually, https:/mail.google.com/mail/u/0/feed/atom)

Now we are ready to go send all our data off to
http:/unsafe.org/collect.php?=yourdata

 https://www.youtube.com/embed/EjXPAwBt_J4

https://mail.google.com/mail/u/0/feed/atom
https://www.youtube.com/embed/EjXPAwBt_J4

Proxy all the things
 An attacker could also use your browser as a proxy to your online

accounts:

Recap

 URI/URL logic within sandboxes isn’t rock solid.

 data URI wins the crown on this one.

 Cross sandbox logic .. incompatible

 Got a longer link of logic vulnerabilities/flaws

 Got higher severity vulnerability: CVE-2014-0535

Recycling exploits

 NtFs == NTFS, case insensitive, test.txt == TeST.txT == 1011001

 Any 2 ways to access the same html file is enough to leak
Data out of the flash sandbox

 Overhead can be overcome by doing things * 10
https://www.youtube.com/embed/Czetgg5gaeY

 Fixed

 CVE-2014-0554

https://www.youtube.com/embed/Czetgg5gaeY
https://www.youtube.com/embed/Czetgg5gaeY
https://www.youtube.com/embed/Czetgg5gaeY

Conclusions

 Looking for logic bugs and using them to exploit browsers proved
to be a sensible approach when trying to hack browsers.

 Just searching for random logic vulnerabilities in a blackbox way
of testing can result in some pretty sweet vulnerabilities

 Creating logic exploits does not require a great amount of tools,
just a certain amount of dedication and a little creativity.

Want to break stuff?
 CVE-2013-6636

https://code.google.com/p/chromium/issues/detail?id=322959
https://www.youtube.com/watch?v=8GL1LKg-xUQ

 CVE-2014-0508
https://hackerone.com/reports/2140
https://www.youtube.com/watch?v=a_h9BTUElG8

 CVE-2014-0535
https://hackerone.com/reports/15362
https://www.youtube.com/watch?v=EjXPAwBt_J4

 CVE-2014-0554
https://hackerone.com/reports/27651
https://www.youtube.com/watch?v=Czetgg5gaeY

https://code.google.com/p/chromium/issues/detail?id=322959
https://code.google.com/p/chromium/issues/detail?id=322959
https://www.youtube.com/watch?v=8GL1LKg-xUQ
https://hackerone.com/reports/2140
https://hackerone.com/reports/2140
https://hackerone.com/reports/2140
https://www.youtube.com/watch?v=a_h9BTUElG8
https://www.youtube.com/watch?v=a_h9BTUElG8
https://www.youtube.com/watch?v=a_h9BTUElG8
https://hackerone.com/reports/15362
https://hackerone.com/reports/15362
https://hackerone.com/reports/15362
https://www.youtube.com/watch?v=EjXPAwBt_J4
https://www.youtube.com/watch?v=EjXPAwBt_J4
https://hackerone.com/reports/27651
https://hackerone.com/reports/27651
https://www.youtube.com/watch?v=Czetgg5gaeY
https://www.youtube.com/watch?v=Czetgg5gaeY
https://www.youtube.com/watch?v=Czetgg5gaeY

	Slide 1
	Whoami?
	Introduction
	Hacking Google Chrome
	URL Spoof Vulnerability
	URL Spoof Vulnerability
	URL Spoof Vulnerability
	URL Spoof Vulnerability
	Recap
	Starting research on Flash Player
	Flash sandbox, some useful info
	Security.LOCAL_WITH_FILE
	Let’s talk about browser quirks
	Let’s talk about exfiltration patterns
	Exfiltrating files out of the sandbox
	Learning exploits new tricks
	Learning exploits new tricks
	Learning exploits new tricks
	Slide 19
	Finishing touches
	Recap
	“But local exploits are lame”
	Break IN the local sandbox
	Break OUT of the local sandbox
	Break OUT of the local sandbox
	PIT STOP
	Proxy all the things
	Recap
	Recycling exploits
	Conclusions
	Want to break stuff?

