

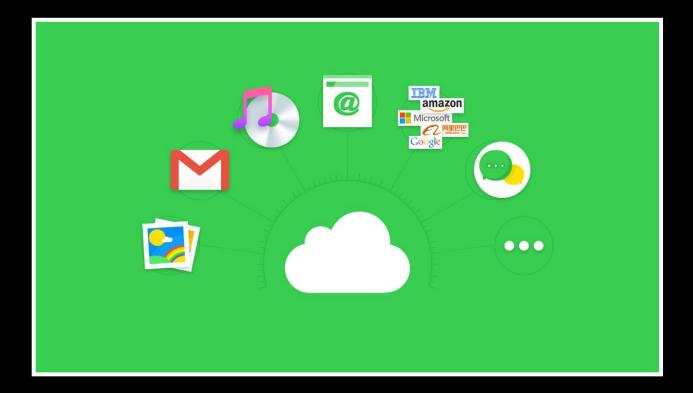
Virtualization System Vulnerability Discovery Framework

Speaker: Qinghao Tang Title : 360 Marvel Team Leader

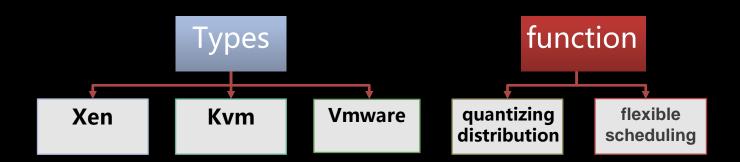
360 Marvel Team

Established in May 2015, the first professional could computing and virtualization security team in China. Focusing on attack and defense techniques in virtualization system.

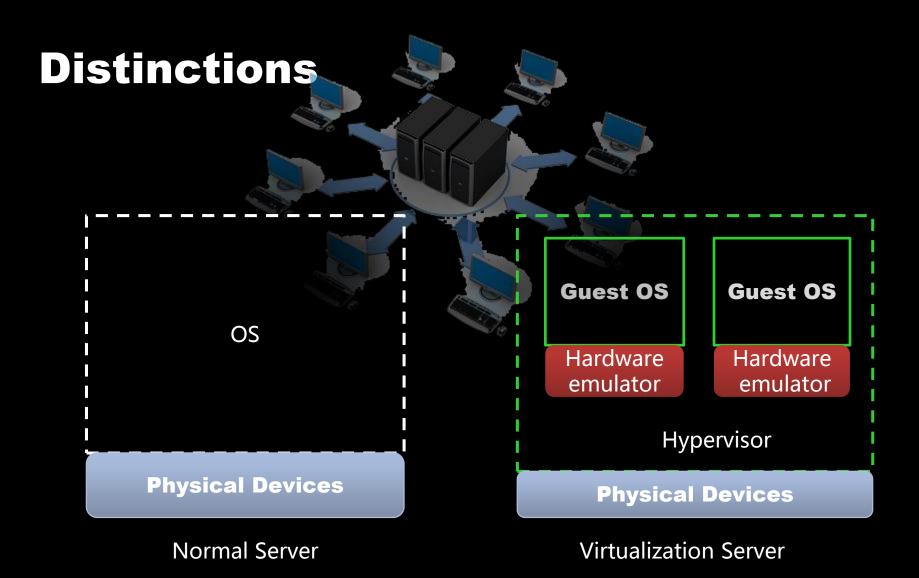
- fuzzing framework
- guest machine escape technology
- Hypervisor risk defense technology

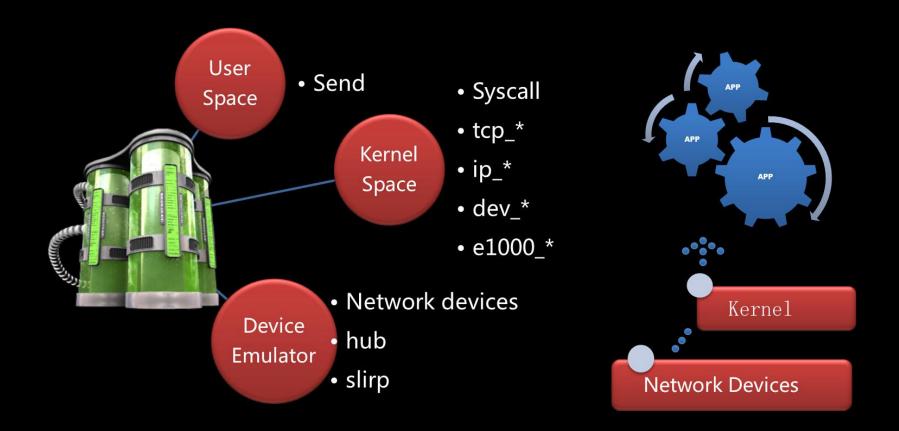


Agenda


- Virtualization System Attack Surface
- The fuzzing framework
- Case study

Virtualization System Attack Surface


Cloud Computing

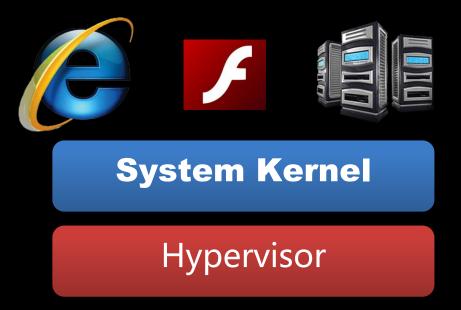


Attacking Processes in cloud computing

- 1. Enter VM via web or other devices
- 2. Exploit virtualization system vulnerabilities to escape VM
- 3. lateral movements to others VMs on host
- 4. Access to host network

Operation Principles of device emulators

The attack surface


 Hardware virtualization components' diversity Qemu : 30+

Vmware : 20+

- Bridge between inside-outside
 VM os -> device emulators -> Host os
- Related Vulnerabilities result big dangers

Compare to traditional targets

• Hardware virtualization focus on lower

• Testing data totally different

Vulnerabilities found by us

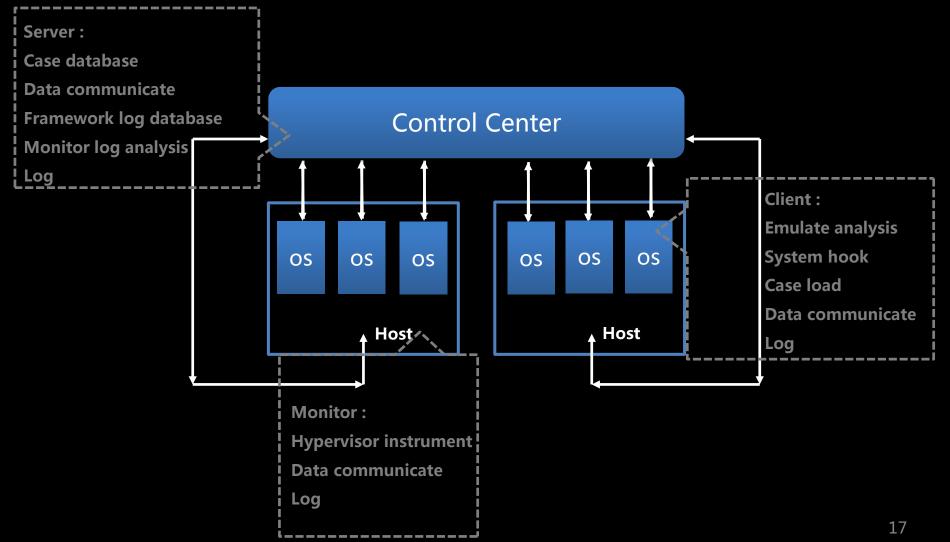
CVE-2015-5225 CVE-2015-5279 CVE-2015-6815 CVE-2015-6855 CVE-2015-8345 CVE-2015-7504 CVE-2015-7549 CVE-2015-8567 CVE-2015-8568 CVE-2015-8558 CVE-2015-8613 CVE-2015-8701 CVE-2016-1568 CVE-2016-1570 CVE-2016-2392

Fuzzing Framework

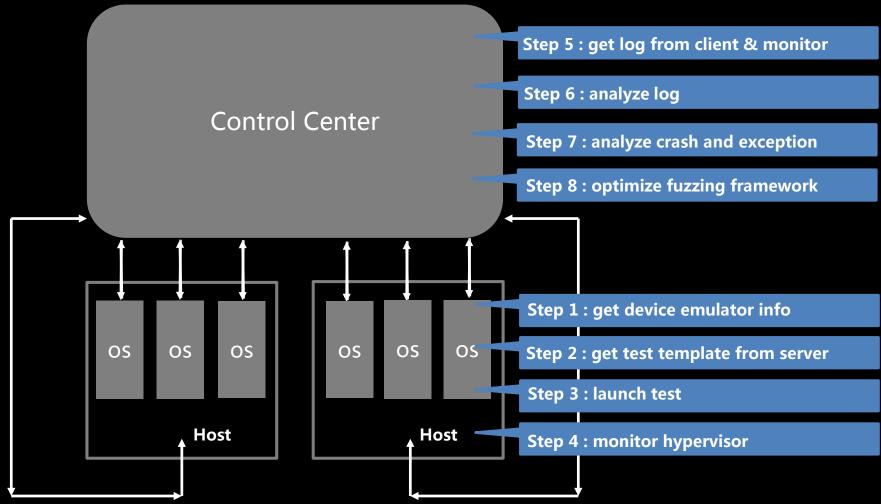
Basic intro

Attack surface : hardware virtual components Environment : qemu , vmware Testing results : more than 25 vulnerabilities Challenges : lower layers hard to predict ;

Methods for testing hardware virtual components


- 1. Analyze data which flowed to components
- 2. Change flowed-in data' s contents and timing
- 3. Recording all of tiny abnormal activities
- 4. Analyze abnormal activities, find reasons
- 5. optimize fuzz framework

Other factors of fuzz framework


1.Flexibility (other OS)

- vm in Linux
- coding in C and Python
- 2. Deeply understand VM system
- language for coding
- development environment
- coding style

Fuzz framework structure

Fuzz framework working flow

Get target components info

→ 设备管理器	E max@localhost:~ _ □ ×
文件(F) 操作(A) 查看(V) 帮助(H)	File Edit View Search Terminal Help
	<pre>[root@localhost ~]# lspci 00:00.0 Host bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX Host bridge (</pre>
	rev 01)
▲ 🚔 tangginghao-D1	00:01.0 PCI bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX AGP bridge (re
	V 01)
▷ · 🔄 IDE ATA/ATAPI 控制器	00:07.0 ISA bridge: Intel Corporation 82371AB/EB/MB PIIX4 ISA (rev 08) 00:07.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
▶ 🔮 安全设备	00:07.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
▷ - ■ 处理器	00:07.7 System peripheral: VMware Virtual Machine Communication Interface (rev 1
▷	0) 00:0f.0 VGA compatible controller: VMware SVGA II Adapter
▷ · 響 端口 (COM 和 LPT)	00:10.0 SCSI storage controller: LSI Logic / Symbios Logic 53c1030 PCI-X Fusion-
	MPT Dual Ultra320 SCSI (rev 01)
▶□■ 计算机	00:11.0 PCI bridge: VMware PCI bridge (rev 02) 00:15.0 PCI bridge: VMware PCI Express Root Port (rev 01)
▶ 💵 监视器	00:15.1 PCI bridge: VMware PCI Express Root Port (rev 01)
▶	00:15.2 PCI bridge: VMware PCI Express Root Port (rev 01)
▷ 伽爾 人体学输入设备	00:15.3 PCI bridge: VMware PCI Express Root Port (rev 01)
	00:15.4 PCI bridge: VMware PCI Express Root Port (rev 01) 00:15.5 PCI bridge: VMware PCI Express Root Port (rev 01)
▶ → 声音、视频和游戏控制器	00:15.6 PCI bridge: VMware PCI Express Root Port (rev 01)
▷ 2 鼠标和其他指针设备	00:15.7 PCI bridge: VMware PCI Express Root Port (rev 01)
▷	00:16.0 PCI bridge: VMware PCI Express Root Port (rev 01) 00:16.1 PCI bridge: VMware PCI Express Root Port (rev 01)
▲ 🗊 网络适配器	00:16.2 PCI bridge: VMware PCI Express Root Port (rev 01)
Intel(R) 82579LM Gigabit Network Connection	00:16.3 PCI bridge: VMware PCI Express Root Port (rev 01)
	00:16.4 PCI bridge: VMware PCI Express Root Port (rev 01)
-🔮 VirtualBox Host-Only Ethernet Adapter	00:16.5 PCI bridge: VMware PCI Express Root Port (rev 01) 00:16.6 PCI bridge: VMware PCI Express Root Port (rev 01)
🔤 VPN Client Adapter - VPN	00:16.7 PCI bridge: VMware PCI Express Root Port (rev 01)
▲ 📜 系统设备	00:17.0 PCI bridge: VMware PCI Express Root Port (rev 01)
ACPI Fan	00:17.1 PCI bridge: VMware PCI Express Root Port (rev 01) 00:17.2 PCI bridge: VMware PCI Express Root Port (rev 01)
	00:17.3 PCI bridge: VMware PCI Express Root Port (rev 01)
	00:17 4 PCI bridge: VMware PCI Express Root Port (rev 01)
ACPI Fan	.5 PCI bridge: VMware PCI Express Root Port (rev 01) .6 PCI bridge: VMware PCI Express Root Port (rev 01)
	7.7 PCI bridge: VMware PCI Express Root Port (rev 01)
ACPI Fan	18.0 PCI bridge: VMware PCI Express Root Port (rev 01)
ACPI Fixed Feature Button	18.1 PCI bridge: VMware PCI Express Root Port (rev 01) 18.2 PCI bridge: VMware PCI Express Root Port (rev 01)
	ou:18.3 PCI bridge: VMware PCI Express Root Port (rev 01)
ACPI Thermal Zone	0:18.4 PCI bridge: VMware PCI Express Root Port (rev 01)
	0:18.5 PCI bridge: VMware PCI Express Root Port (rev 01)
	00:18.6 PCI bridge: VMware PCI Express Root Port (rev 01) 00:18.7 PCI bridge: VMware PCI Express Root Port (rev 01)
High Definition Audio 控制器	02:00.0 USB controller: VMware USB1.1 UHCI Controller
	02:01.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet Controll
	er (Copper) (rev 01) 02:02.0 Multimedia audio controller: Ensoniq ES1371 [AudioPCI-97] (rev 02)
	02:03.0 USB controller: VMware USB2 EHCI Controller

Testing data

- Device access ports
- Device deal with structures used by data.
- Device data processing

Testing data attacks

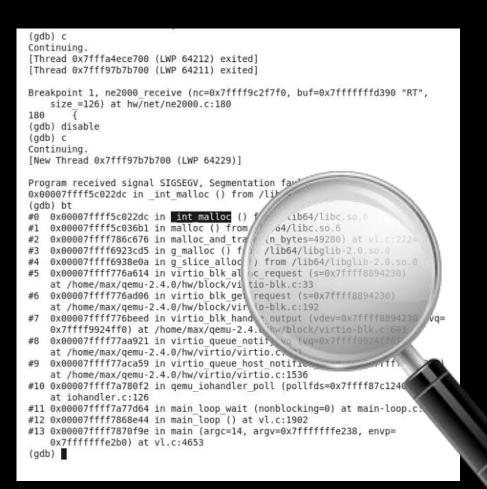
- User space: generate testing dat, send request to client kernel
- Kernel space: apply for memory, fill memory, send info to ports
- Device emulator : testing data flow inside , trigger exceptions

Monitor

VM management

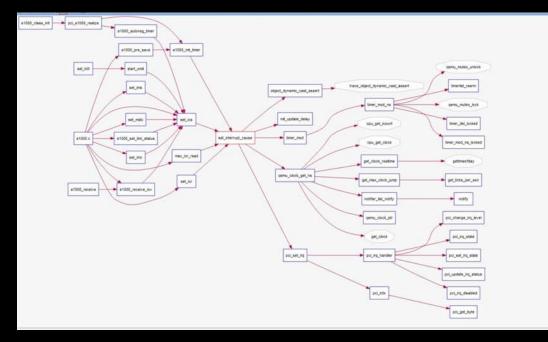
- Snapshot
- Reboot
- VM device editing

Dynamic debugging


- Debugging Mode on Start
- Load Debugging Plugin

VM processing log

- User space
- Kernel space


Exceptions occur in device emulator

- VM os crash
- Hypervisor crash
- Invisible results

Advanced monitoring skills

- Dynamic
- Static

Optimize fuzz framework by using log data

• Client log

Decrease invalid combinations

Monitor log

Promote coverage

Server log

Limitation & Future

- Permission limitation
- More kinds of virtualization systems :

Hyper-V ; VMWARE

• More attack surfaces :

hypercall ; virtio ; guest machine client

About open source project

Case Study

Principle of e1000 Network Device •Initialization

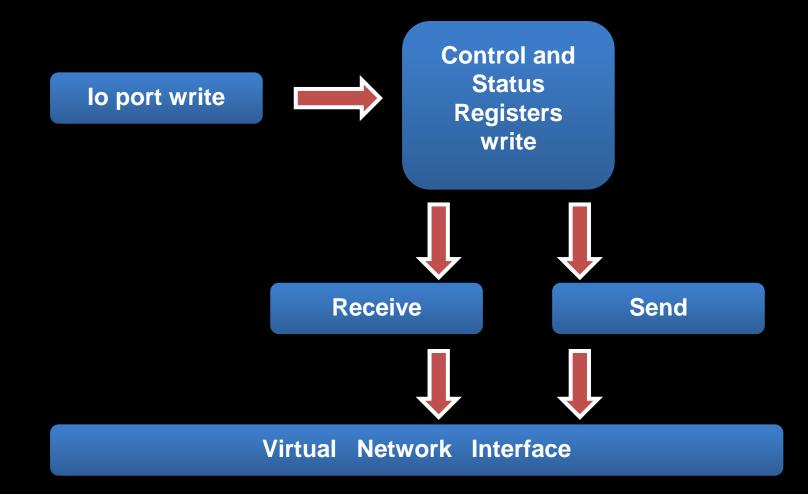
Port Allocation , Address Mapping Device Status Setting, Resource Allocation

Data Transfer

'Write Command' to device TDT registerprocess of descriptor3 types descriptor : context , data , legacydata xferset status , wait for next instruction

Processing Details

Circular Memory TSO : tcp segmentation/flow control.



E1000 vulnerability analysis

- Qemu e1000 Network Device
- Vmware e1000 Network Device

```
do {
   bytes = split size;
   if (tp->size + bytes > msh)
       bytes = msh - tp->size;
   bytes = MIN(sizeof(tp->data) - tp->size, b/ _);
   pci dma read(d, addr, tp->data + tp->size oytes);
   sz = tp->size + bytes;
   if (sz >= tp->hdr len && tp->size < tp-> dr len) {
       memmove(tp->header, tp->data, tp->hd; len);
   tp->size = sz;
   addr += bytes;
   if (sz == msh) {
       xmit seq(s);
       memmove(tp->data, tp->header, tp->hdr len);
       tp->size = tp->hdr len;
} while (split size -= bytes);
```

Pcnet network card emulator working processes

Pcnet vulnerability analysis

Qemu pcnet Network Device

```
} else if (s->looptest == PCNET_LOOPTEST_CRC ||
    !CSR_DXMTFCS(s) || size < MIN_BUF_SIZE+4) {
    uint32_t fcs = ~0;
    uint8_t *p = src;

while (p != &src[size])
    CRC(fcs, *p++);
 *(uint32_t *)p = htonl(fcs);
 size += 4;</pre>
```

Summary

Stay tuned for more achievements by 360 Marvel Team

Email : tangqinghao@360.cn QQ : 702108451