iCloud syncing and 2FA: friend or foe?

Vladimir Katalov
ElcomSoft Co.Ltd.
Moscow, Russia
About us: our customers
What’s inside the smartphone?

- Contacts & calendars
- Call logs and text messages
- Emails and chats
- Account and application passwords
- Web and Wi-Fi passwords
- Documents, settings and databases
- Web history & searches
- Pictures and videos
- Geolocation history, routes and places
- 3rd party app data
- Cached internet data
- System and application logs
- Social network activities
Data acquisition methods

- **JTAG/chip-off**
 - there is no test access port on many devices
 - full-disk encryption makes offline attacks completely useless

- **Physical**
 - Limited compatibility
 - May alternate data
 - Data may be encrypted

- **Logical**
 - Limited compatibility
 - Bypassing screen lock is needed

- **Cloud**
 - Limited set of data
 - Need credentials
 - Legal problems
Cloud: backup, sync or just storage?

- **Problems**
 - Different platforms (Apple, Google, Microsoft)
 - Many vendor-specific clouds (especially in China: 360, QQ etc)
 - 3rd party cloud services (Dropbox, Amazon, Azure and more)
 - Credentials needed (password or token)

- **Profits**
 - No physical access needed
 - May be performed silently

- **Backup**
 - No standard way to get
 - Might not be available
 - Almost all data from device

- **Sync**
 - Limited set of data
 - Most critical real-time data
 - Synced across all devices

- **Storage**
 - Only files/documents
 - Easy to access
Cloud services: backups

- Full device backups are sometimes available (Apple only 😊)
- 3rd party application data is usually not available
- Passwords are not always being saved; might be additionally encrypted
- Daily backups (in best case, until forced from the device)
- Backups cannot be forced remotely
- 3rd party software (like ours 😊) is needed
- Almost no way to manage
- Slow access, long download
Cloud services: synced data

- Contacts
- Call log
- Messages (SMS, iMessage, Hangouts, Skype)
- Calendars
- Mail (only cloud-based)
- Internet activities (visited sites, searches)
- Media files (photos, videos)
- Gaming data
- **Passwords**
- Health data

Other
- *Payment info*
- Home devices
- Wallet (Apple-specific)
- Maps (searches, bookmarks, routes)
- Books
- News, weather
- *Location data*
More (i)Cloud data

- Account information
- iCloud storage information
- Contact information (billing/shipping address, emails, credit cards (last 4 digits)
- Connected devices
- Customer service records
- iTunes (purchase/download transactions and connections, update/re-download connections, Match connections, gift cards)
- Retail and online store transactions
- Mail logs
- Family sharing data
- iMessage and FaceTime metadata
- Deleted data?
Cloud data by platform

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Google</th>
<th>Microsoft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backups</td>
<td>+ (three)</td>
<td>Sort of (single)</td>
<td>Soft of (several)</td>
</tr>
<tr>
<td>Contacts/calendars/tasks</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Call log</td>
<td>☺</td>
<td>☺</td>
<td>In backups only</td>
</tr>
<tr>
<td>Notes</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Messages</td>
<td>-</td>
<td>Android N (?)</td>
<td>+</td>
</tr>
<tr>
<td>Mail</td>
<td>iCloud mail</td>
<td>Gmail</td>
<td>Outlook</td>
</tr>
<tr>
<td>Internet</td>
<td>Safari</td>
<td>Chrome</td>
<td>Edge</td>
</tr>
<tr>
<td>Media</td>
<td>iCloud Photo Library</td>
<td>Google Photos</td>
<td>OneDrive</td>
</tr>
<tr>
<td>Documents</td>
<td>iCloud Drive</td>
<td>Google Docs</td>
<td>OneDrive</td>
</tr>
<tr>
<td>Location</td>
<td>Current/last</td>
<td>Current, history</td>
<td>Current, history</td>
</tr>
<tr>
<td>3rd party apps data</td>
<td>iCloud Drive</td>
<td>Google Drive</td>
<td>OneDrive</td>
</tr>
<tr>
<td>Other</td>
<td>Health (?), Wallet</td>
<td>Dashboard and more</td>
<td>HealthVault, Skype</td>
</tr>
</tbody>
</table>
Cloud passwords, keys etc

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Google</th>
<th>Microsoft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi</td>
<td>+</td>
<td>+</td>
<td>In backups</td>
</tr>
<tr>
<td>Web sites</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Credit cards</td>
<td>+</td>
<td>CVV is needed</td>
<td>?</td>
</tr>
<tr>
<td>Credit cards (2)</td>
<td>Apple Pay (Wallet): last 4 digits only</td>
<td>Google Pay (?)</td>
<td>Wallet (?)</td>
</tr>
<tr>
<td>App-specific</td>
<td>It depends</td>
<td>Sometimes 😊</td>
<td>-</td>
</tr>
<tr>
<td>Authentication tokens</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Encryption keys</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Certificates</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Autocomplete</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Apple keychains

- iOS keychain
 - Local (encrypted backup)
 - Local (not encrypted backup)
 - iCloud

 View: Settings | Safari | Passwords, Settings | Safari | AutoFill
 Protection: it depends
 Decrypt/export: no way (3rd party software only)

- OS X (macOS) keychain

 View: Keychain utility (one by one)
 Protection: password (by default, same as log on)
 Decrypt/export: 3rd party software only

- iCloud keychain

 View: Only when/if synced with local device
 Protection: well, strong 😊
 Decrypt/export: no way
Backup vs iCloud keychains

<table>
<thead>
<tr>
<th></th>
<th>Backup</th>
<th>iCloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Web sites</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Credit cards</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>App-specific</td>
<td>+</td>
<td>It depends</td>
</tr>
<tr>
<td>AirPlay/AirPort</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Encryption keys & tokens</td>
<td>+</td>
<td>It depends</td>
</tr>
<tr>
<td>Autocomplete</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Keychain in iCloud backups have most data encrypted with device-specific key
iOS keychain – passwords (Wi-Fi, email, web form)

- **AirPort (AP name)**
 - **Name**: Airport
 - **Service**: Airport
 - **Account**: AP name
 - **Data**: AP password
 - **Access Group**: apple
 - **Creation Date**: 20121231120800.529226Z
 - **Modification Date**: 20121231120800.529226Z
 - **Protection Class**: CLASS: 7

- **accounts.google.com (email)**
 - **Name**: accounts.google.com
 - **Server**: accounts.google.com
 - **Account**: email
 - **Data**: password
 - **Protocol**: HTTPS
 - **Authentication Type**: form
 - **Description**: Web form password
 - **Access Group**: com.apple.cfnetwork
 - **Creation Date**: 20150705071047.78112Z
 - **Modification Date**: 20150805133813.889686Z
 - **Protection Class**: CLASS: 6

- **imap.gmail.com (vkatalov@gmail.com)**
 - **Name**: imap.gmail.com
 - **Server**: imap.gmail.com
 - **Account**: email
 - **Data**: password
 - **Protocol**: IMAP
 - **Port**: 143
 - **Access Group**: apple
 - **Creation Date**: 20121231124745.097385Z
 - **Modification Date**: 20121231124745.097385Z
 - **Protection Class**: CLASS: 7
iOS keychain (credit card data)

{Name}SafariCreditCardEntries (BBA00CB1-9DFA-4964-B6B8-3F155D88D794){/Name}
<Service>SafariCreditCardEntries</Service>
<Account>BBA00CB1-9DFA-4964-B6B8-3F155D88D794</Account>
<Data>
 <Dictionary>
 <CardholderName>NAME</CardholderName>
 <ExpirationDate>DATE</ExpirationDate>
 <CardNameUIString>Visa</CardNameUIString>
 <CardNumber>NUMBER</CardNumber>
 </Dictionary>
</Data>
<Comment>This keychain item is used by Safari to automatically fill credit card information in web forms.</Comment>
<Access Group>com.apple.safari.credit-cards</Access Group>
<Creation Date>20131016100432.283795Z</Creation Date>
<Modification Date>20150826181627.118539Z</Modification Date>
<Label>Safari Credit Card Entry: Visa</Label>
<Protection Class>CLASS: 6</Protection Class>
iOS [backup] keychain protection classes

kSecAttrAccessibleAfterFirstUnlock (7)
The data in the keychain item cannot be accessed after a restart until the device has been unlocked once by the user.

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly (10)
The data in the keychain item cannot be accessed after a restart until the device has been unlocked once by the user.

kSecAttrAccessibleAlways (8)
The data in the keychain item can always be accessed regardless of whether the device is locked.

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly
The data in the keychain can only be accessed when the device is unlocked. Only available if a passcode is set on the device.

kSecAttrAccessibleAlwaysThisDeviceOnly (11)
The data in the keychain item can always be accessed regardless of whether the device is locked.

kSecAttrAccessibleWhenUnlocked (6)
The data in the keychain item can be accessed only while the device is unlocked by the user.

kSecAttrAccessibleWhenUnlockedThisDeviceOnly (9)
The data in the keychain item can be accessed only while the device is unlocked by the user.

- **xxxThisDeviceOnly**: encrypted using device-specific hardware key (can be extracted from 32-bit devices only)
- All others: in password-protected local backups, encrypted with the key derived from backup password
iTunes backup password breaking

- Get manifest.plist
- Get BackupKeyBag
- Check password
 - iOS 3
 - `pbkdf2_sha1(2,000)`
 - iOS 4 to 10.1 (but 10.0)
 - Same as above, but 10,000 iterations
 - iOS 10.0
 - Same as above works
 - *Single sha256 hash is also stored*
 - iOS 10.2+
 - `pbkdf2_sha256(10,000,000)`
 - `pbkdf2_sha1(10,000)`
 - Unwrap AES key from KeyBag
 - Decrypt keychain (+other files?)

Hashes are salted, so no rainbow tables 😎
macOS keychain

Keychain Access

1.1.1.1 (433)
Kind: Web form password
Account: 433
Where: http://1.1.1.1
Modified: Jul 13, 2015, 5:08:40 AM

Attributes

Name: 1.1.1.1 (433)
Kind: Web form password
Account: 433
Where: http://1.1.1.1
Comments:

Show password: katalov

Save Changes
iCloud data protection

Most of the data: A minimum of 128-bit AES encryption
iCloud Keychain: Uses 256-bit AES encryption to store and transmit passwords and credit card information. Also uses elliptic curve asymmetric cryptography and key wrapping.

Key is stored along with the data (except just the iCloud keychain)!

- Notification to email when the data is accessed
- Account might be blocked due to suspicious activity (new!)
- Two-step verification (legacy, not recommended)
- Two-factor authentication
 - Immediate push notification to all trusted devices
 - Have to allow access
 - Security code
 - As push notification
 - By SMS to trusted phone number
 - Generated by trusted device

Workaround for 2FA: use authentication token from the device (iPhone/iPad/iPod), PC or Mac
iCloud sign-in

Your Apple ID is being used to sign in to a new device
Your Apple ID is being used to sign in to a PC near Amsterdam, North Holland.
Set up iCloud keychain – no 2FA

To use iCloud Keychain on this iPhone, approve it from another device that uses iCloud Keychain or use your iCloud Security Code.

Approve with Security Code

iCloud Keychain

Keep your passwords and credit card information up to date across the devices you approve. Your information is encrypted and cannot be read by Apple.

Use a Complex Security Code

Get a Random Security Code

Don’t Create Security Code

If you don’t create a security code, setting up iCloud Keychain on a new device will require your approval from a different device.

Use Passcode

Create Different Code

Your iCloud Security Code can be used to set up iCloud Keychain on a new device.
Set up 2FA

1. **Turn On Two-Factor Authentication**
 - Add an additional layer of security to your account to protect the photos, documents and other data you have stored with Apple.

2. **Enter the code sent to email**
 - Enter the code sent to your email address. If you don’t see the code, follow the on-screen instructions.

3. **Verify**
 - Review the verification code on your new device.

Smart choice! Or...
Set up iCloud keychain – 2FA

Enter Device Password
Some of your data stored in iCloud is protected by the password you use to unlock “VK-IMAC”.
Your password is encrypted and cannot be read by Apple.

Forgot Device Password?

Choose Device
Your account is protected by your device passcodes.
iCloud keychain inside out

iOS Security Guide:

• **Keychain syncing**
 - Circle of trust
 - Public key: syncing identity (specific to device)
 - Private key (elliptical P256), derived from iCloud password
 - Each synced item is encrypted specifically for the device (cannot be decrypted by other devices)
 - Only items with `kSecAttrSynchronizable` are synced

• **Keychain recovery**
 - Secure escrow service (optional)
 - iCloud security code is needed (not with 2FA!)
 - Hardware Security Module (WTF is that? 😊)
Escrow proxy architecture

Escrow proxy

- SRP (Secure Remote Password) protocol
- Safe from MITM
- Does not need password to be transferred in plain text
- Does not keep password on server

Diagram:
- iCloud Secure Code (ex. 1234)
- KeyBagKey (ex: YRFGD-98HDH-56487-DHHF8-JNBP7)
- Hash: SHA-256, iterations: 10000
- PBKDF2
- AES-CBC
- Encrypted Key
- Save to Escrow
Escrow proxy protocol

- **enroll**
 to add new records

- **get_records**
 to get data

- **get_sms_targets**
 get trusted phone numbers

- **generate_sms_challenge**
 start verification by sms

- **srp_init**
 first authentication step under SRP

- **Recover**
 second SRP step

What we can get from Escrow record

- Info on key used for protection
- Number of failed retries
- Device data (model, version, password strength)
- List of keys for KeyBag decryption
- Protected Storage Services list
SRP protocol

iCSC - iCloud Secure Code
H – SHA256
N, g – 2048-bit generator of the multiplicative group (RFC 5054)

The user enroll password verifier and salt to EscrowCache. EscrowCache stores password verifier and salt.

\(<\text{salt}> = \text{random}()\)
\(x = \text{SHA}(<\text{salt}> | \text{SHA}(<\text{dsid}> | ":" | <\text{iCSC}>))\)
\(<\text{password verifier}> = v = g^x \mod N\)

If `com.apple.securebackup` record exists, that means that iCloud Security Code is set. Otherwise, EscrowProxy contains `com.apple.icdp.record.hash_of_device` records, so iCloud Keychain can be synced when one of device passwords is provided.
Key-Value Storage

If 2FA is enabled, keychain data are copied into KVS for circle synchronization.
Keychain recovery

- **GetAccountSettings** (get token)

- **Sync**
 Registry-version: if empty, get the whole keychain (plus current state); if not, get only new data
 Returns keychain and BackupKeyBag

- **SRP authentication**
 get_sms_targets
 generate_sms_challenge

- **srp_init**
 Get data for Recovery request

- **Recover** (get KeyBagKey)
 - Decrypt KeyBagKey
 - Decrypt KeyBag
 - Decrypt KeyChain

If we have 2FA passed and obtained the token:
 - No need to have trusted device
 - No iCloud Security Code
 - No notification to trusted devices
 - Get all the passwords and CC data 😊
 - One of device’ passcodes is still needed 😞
iCloud Keychain access - alternatives

• **Add new device to “circle of trust”**
 • Need to pass 2FA
 • Notifications to all devices

• **Get iCloud backup**
 • Same as above
 • Might not exist (or too old)
 • Need to get *securityd* key (physical acquisition only, 32-bit devices)
 • No real-time access

• **Get local backup**
 • Physical access to PC/Mac is needed
 • Backup might be password-protected

• **Break *circle* protocol? 😊**
Thanks!
Questions?