
HITB Lockdown 002, Virtual Lab

July, 2020

Qiling Framework:

Learn how to build a fuzzer based on a 1day bug

NGUYEN Anh Quynh, aquynh -at- gmail.com

KaiJern LAU, kj -at- qiling.io

TianZe DING, dliv3 -at- gmail.com

BoWen SUN, w1tcher.bupt -at- gmail.com

huitao, CHEN null -at- qiling.io

twitter: @qiling_io https://qiling.io Tong YU, spikeinhouse -at- gmail.com

About xwings

Electronic fan boy, making

toys from hacker to hacker

Badge Maker

> Reversing Binary

> Reversing IoT Devices

> Part Time CtF player

> 2016, Qcon, Beijing, Speaker, nRF24L01 Hijacking

> 2016, Kcon, Beijing, Speaker, Capstone Unicorn Keystone

> 2017, Kcon, Beijing, IoT Hacking Trainer

> 2018, Kcon, Beijing, IoT Hacking Training

> 2018, Brucon, Brussel, Speaker, IoT Virtualization

> 2018, H2HC, San Paolo, Speaker, IoT Virtualization

> 2018, HITB, Beijing/Dubai, Speaker, IoT Virtualization

> 2018, beVX, Hong Kong, Speaker, HackCUBE - Hardware Hacking

Beijing, Stays in the lab

24/7 by hoping making the

world a better place

JD.COM

> IoT Research

> Blockchain Research

> Fun Security Research

> 2019, DEFCON USA, Qiling Framework Preview

> 2019, Zeronights, Qiling Framework to Public

> 2020, Nullcon GOA, Building Reversing Tools with Qiling

> 2020, HITB AMS, Building Reversing Tools with Qiling

> 2020, HITB Singapore, Training, How to Hack IoT with Qiling

> 2020, Blackhat USA, Building IoT Fuzzer with Qiing

> 2020, Blackhat Singapore, Building Fuzzer with Qiing

Some Recent Talk (Partial) Qiling Framework

> Cross platform and cross architecture binary

instrumentation framework

> Emulate and instrument ARM, ARM64, MIPS, X86

and X8664

> Emulate and instrument Linux, MacOS, iphoneOS,

Windows and FreeBSD

> High-level Python API access to register, CPU and

memory

> 1,100+ Github star, more than 3,000 pypi

download, 40+ contributors worldwide

> Contributor from Dell, Intel, Fireeye and etc

Badge Designer for Hacking Conferences

Cross platform and multi

architecture advanced binary

emulation framework

Qiling Framework

> https://qiling.io

> Lead Developer

> Founder

About Dliv3/w1tcher/Null/Sp1ke

Rest of the team members are from theshepherdlab , Dubhe CTF team & community

NGUYEN Anh Quynh

> Nanyang Technological University, Singapore

> PhD in Computer Science

> Operating System, Virtual Machine, Binary analysis, etc

> Usenix, ACM, IEEE, LNCS, etc

> Blackhat USA/EU/Asia, DEFCON, Recon, HackInTheBox,

Syscan, etc

> Capstone disassembler: http://capstone-engine.org

> Unicorn emulator: http://unicorn-engine.org

> Keystone assembler: http://keystone-engine.org

https://github.com/qilingframework/qiling

Motivation

Qiling framework

Design & implementation

Build dynamic analysis tools on top of Qiling Framework

Hands On

Star u
s

Internet of Things

投资方

分析信任

IoT

• Camera

• Air-con

• TV

• FAN

• Heater

• Fridge

• Watch

• Lock

• Security

• Kitchen

• Phone

What is IoT

Traditional IoT Hacking

The Web Hacker

exploitalert.com

Firmware Hacking

Hardware Hacking

Additional Note: What To Buy

Hot Air Gun

Multi Meter

Case Study

Buying a China Only Cam

Talking Cam’s Warming

“Not Allow To Use Outside China”

Answer from Google and Baidu

Hacking Started

17CN 1.8.6.1R_201611191201

Not downgrade able

Not down gradable could be a bug

Try to Connect to USB TTL

Power

USB TTL

No Way To Get Near USB TTL

Solving Puzzle

Finding GND

Guessing RX TX

Multi meter

What To We Want To Archive

Work without Xiaomi app

Turn on WiFi while Boot

Turn on telnet while boot

Turn on ftp while boot

Turn RTSP whole boot

Enabling Services

Forgotten to mount FS after boot

Back To Data Sheet

sdcard Is not readable while boot

Analyzing The Actual Firmware

Understanding dmesg

Dumping The Firmware

Making sure the firmware is the same with the one on the internet

Debug and Patch

Extract !

Extract JFFS

Making The Firmware

qemu-img create test.img 1024M

mkfs.ext2 –F test.img

mount –t ext2 –o loop,rw test.img /mnt/test

Copy all files

umount

Test Booting with QEMU

/home/xwings/qemu-2.9.0/arm-softmmu/qemu-system-arm -cpu arm1176 -M versatilepb -kernel /home/xwings/yicam_home_720p/testrun/kernel-
qemu-4.4.34-jessie -append "console=ttyAMA0 root=/dev/sda rootfstype=ext2 rw" -hda /home/xwings/yicam_home_720p/yi-hack-
v3/rootrootfs.img -nographic

Firmware Repacking

Seal

Flashing Back The Firmware

Getting Firmware

c

c

c

Firmware and Hardware

Extract From Flash , Extract From APK, Traffic Sniffing or Just Download

Technically 1. Download 2. Patch with Backdoor 3. Flash 4. pwned

If we need more ?

1. RCE 2. Fuzz

Work Around

Complete Kit to Success

MIPS ARM AARCH64

Classic LIBC Issue
How Many Dev Board

Hardware is not “down gradable”

Assembly Instruction Compatibility

ARM AARCH64

Why Firmware Emulation

More Resources = More Power

Processor RAM FLASH

Most Important, we got apt-get

Multicore MAX RAM MAX Space

Normally 1-2 Core
Normally

256MB/512MB

Normally

8MB/16MB/32MB/256MB

Objectives

Only One Process with Interaction

most of the devices comes with one big binary

Hunt for the one that spawn

listener port

Boot

Distro and Kernel Mix and Match

argument: running new or old distro + kernel

script to boot arm script to boot mips

chroot

Easy Way Out, chroot

chroot is easy (still hardware dependent), but we will have issue with tools

Running without chroot

Stage 0 Issue: File Not Found

The File Missing Trick

We found you

We Missed You

Stage 1 Issue: .SO Not Found

Out from chroot, we need feeeding

Feeding all the required so and binary with “ln –s”

Out from chroot, we need feeding

“segfault” without clear error. strace come to rescue

Classical file not found error

NVram

reply with

nvram info

Dark side of NVRAM

ask for nvram info

main process

interactor

Relationship between main binary is so intimate,

but in actual fact. Is just a hit and run

reply with

nvram info

Dark Side of NVRAM

ask for nvram info

main process

Relationship between main binary is so intimate,

but in actual fact. Is just a hit and run

Dark Side of the main process, we ignore and con’t to next step

interactor

A fake NVRAM

ask for nvram info

main process

interactor

IF interactor is the medium,

can we fake it ?

reply with

nvram info

A fake NVRAM

ask for nvram info

main process

interactor

reply with

nvram info

Custom Interactor

IF interactor is the medium,

can we fake it ?

br0

The bridge trick

The switch looking device

Wireless Devices

Faking wpa_supplicant

making eth0 looks like wlan0 works too

Every Thing Else Fail

BL, BNE, BEQ and friends

Patched BIN

Argument: To Patch or To Fulfill Firmware Needs

Original BIN

Motivations

More Resources = More Power

Processor RAM FLASH

Or We Can Just X86 IT

Multicore MAX RAM MAX Space

Normally 1-2 Core
Normally 256MB/512MB Normally

8MB/16MB/32MB/256MB

What is Required

MIPS ARM AARCH64 X86

*BSD Linux MacOS Windows

Debugger or Disassembler

Why Not Off The Shelf Emulator

More Emulate = Higher Chances Being Detected

Over

Emulate

Unicorn Emulator framework

Multi-architectures: Arm, Arm64, M68K, Mips, Sparc, & X86 (include X86_64)

Native support for Windows & *nix (with Mac OSX, Linux, *BSD & Solaris confirmed)

Clean/simple/lightweight/intuitive architecture-neutral API

Implemented in pure C language, with multiple bindings

High performance by using Just-In-Time compiler technique

Support fine-grained instrumentation at various levels

Just emulator for low level instructions + memory access

No higher level concepts of Operating System

File format

Library

Filesystem

Systemcall

OS structures

Limitation

Qiling Framework

Features

Cross platform: Windows, MacOS, Linux, BSD

Cross architecture: X86, X86_64, Arm, Arm64, Mips

Multiple file formats: PE, MachO, ELF, UEFI(PE)

Emulate & sandbox machine code in a isolated environment

Provide high level API to setup & configure the sandbox

Fine-grain instrumentation: allow hooks at various levels (instruction/basic-block/memory-
access/exception/syscall/IO/etc)

Allow dynamic hotpatch on-the-fly running code, including the loaded library

True Python framework, making it easy to build customized analysis tools on top

Full GDB/IDA/r2 Support

OS profiling support

User Mode Emulation

qemu-usermode

The TOOL

Limited OS Support, Very Limited

No Multi OS Support

No Instrumentation

Syscall Forwarding

usercorn

Very good project !

It’s a Framework !

Mostly *nix based only

Limited OS Support (No Windows)

Go and Lua is not hacker’s friendly

Syscall Forwarding

WINE

Limited ARCH Support

Limited OS Support, only Windows

Not Sandbox Designed

No Instrumentation

WSL/2

Limited ARCH Support

Only Linux and run in Windows

Not Sandboxed, It linked to /mnt/c

No Instrumentation (maybe)

Binee

Very good project too

Only X86 (32 and 64)

Limited OS Support (No *NIX)

Just a tool, we don’t need a tool

Again, is GO

Zelos

Very good project !

It’s a Framework !

Linux based only (No Windows)

Incomplete support for Linux multi
arch

How Qiling Works

How Does It Work

Loader and

Setup

PE

ELF

MACHO

PE32+
Loader

Loader

post processemu

emu

result

API / Syscall

Posix/OSX/Windows

Instrumentation

Base OS can be Windows/Linux/BSD or OSX

And not limited to ARCH

UEFI

OS Adventure

Loader

Parse != Loader

ELF Loader

PE Loader

MACHO Loader

Posix Series - Syscall Emulator

Syscall almost the same for OSX/Linux/*BSD

Kernel Programming 101

Emulate Syscall

Skip/Forward or Emulate Code

Prepare Execution Report

Syscall Implementation

CPU Adventure

X86 32/64 Series

X86 32bit GDT For Windows

X86 32/64bit GDT For Linux

It took us sometime to fix the GDT and Set Thread Area

X86 64bit GDT For Windows

ARM/64 Series

ARM/Thumb and ARM64

Making Sure Loader is compatible

ARM MCR instruction for Set TLS

ARM Kernel Initialization

ARM and ARM64 Enable VFP

MIPS32EL Series

MIPS Comes with CO Processor

Configuration needed for CO Processor

Unicorn does not support Floating Point

Patch Unicorn to Support CO Processors

Custom Binary Injected for Set Thread Area

Applications of Qiling

Build dynamic analysis tools – Basic ++

Let Qiling loads the binary (loading + dynamic linking)

Syscall & system API logging available, provided by default

Program callbacks with Qiling hook capabilities: hook memory access, hook address range

Repeat in a loop: run() → analysis → resume()

Debugger – GDB / IDAPro/ r2

Guided fuzzer – cross platform/architecture

Cross platform/architecture: Windows, MacOS, Linux, BSD on X86, Arm, Arm64, Mips

https://github.com/qilingframework/qiling/tree/dev/examples/fuzzing

Firmware analysis

Emulation offers a chance to move
analysis to a much more powerful
platform

Emulate a single binary is better
than whole firmware

Hardware emulation is tough
without hardware specs

Series of different firmware can
share the same target binary

Challenges

Dump firmware, or extract
firmware from binary blob

Extract the target binary

NVRAM emulation

Dependency libraries

Presence of other devices:
wireless interface

Demo Setup

VirtualBox or VMware

ARM HelloWorld

Debug Mode

Simple Crackme Challenge

Brute Forcer

Qiling: Hands On Time

Training Setup

Required OS

Ubuntu 18.04 / 20.04

WSL2

Installation

sudo apt-get update

sudo apt-get upgrade

sudo apt install python3-pip git cmake build-essential libtool-bin python3-dev automake flex bison libglib2.0-dev
libpixman-1-dev clang python3-setuptools llvm

pip3 install qiling OR git clone git@github.com:qilingframework/qiling.git

Install AFL++

git clone https://github.com/AFLplusplus/AFLplusplus.git

cd AFLplusplus

make

cd unicorn_mode

./build_unicorn_support.sh

Emulate a Router

https://github.com/zsjevilhex/iot/tree/master/route/tenda

Device Emulation

Third Party NVRAM

Devices

Read and write emulation for /dev/<devices>

Able to input custom feedback towards Qiling

Emulate Unix Domain Socket Connections

Emulate ENV Input

Firmware Fuzzing

Fuzzing DIR-815

https://www.exploit-db.com/exploits/33863

https://drive.google.com/file/d/10f3cqObsyZ_GHFy0DM-9d1VdsKCVhYjS/view?usp=sharing

What Else

More Features

https://docs.qiling.io

One Last Thing

Call for sponsor for development of Unicorn 2

Current Unicorn is based on Qemu 2.1.2, from 2015

Planning for Unicorn 2, based on new Qemu (5+)

Some new exciting APIs in planning

https://github.com/unicorn-engine/unicorn/issues/1217

NGUYEN Anh Quynh, aquynh -at- gmail.com, @unicorn_engine

