
Breakout Script Of the Westworld

Tang Tianwen(nickname VictorV)

Cyber Security Researcher at Vulcan Team, 360 Security

Xiao Wei

Cyber Security Researcher at Vulcan Team, 360 Security

About Us

 Cyber security researcher at 360 Security Vulcan Team.

 Found several critical vulnerabilities on VMware products.

CVE-2017-4902, CVE-2018-6981, CVE-2018-6983 …

 Focus on Virtualization Security.

 Found two critical vulnerabilities on Hyper-V

CVE-2019-1230, CVE-2019-0723

 Escape from VMware Workstation in public on Tianfu Cup 2018.

VictorV

About Us

 Cyber security researcher at 360 Security Vulcan Team.

 Focus on Virtualization Security and Web browser Security.

 Escape from VMware Workstation, vSphere, VirtualBox, QEMU for several times

 PoC 2016 speaker

 Escape from VMware Workstation on Pwn2Own 2017

 Escape from QEMU, VirtualBox, ESXi on Tianfu Cup 2019

Xiao Wei

Agenda

 Overview of VM network device architecture

 Exploitation primitives on VMware Workstation & ESXi

 Attack Case of ESXi

 Attack Case of Workstation

 Live demo of escaping

 Conclusion

Overview of Virtual Net Device

 Virtual Network Devices Architecture

 Attack Surfaces

Devices Architecture

 Guest Driver sends commands and
data via IO port or IO memory

 Each Guest is created by a vmx
process in host

 Virtual Device filters data from IO
and transmits to physical device

Devices Architecture

Suggested text placement.

Please do not go beyond the white area.

Attack Surfaces

 Incorrect handling network command data

CVE-2018-3294, CVE-2018-6983, CVE-2018-6973...

 Incorrect handling Guest address translation

CVE-2018-6981, CVE-2018-6982...

 Incomplete checks of socket fields

VMCI host driver integer overflow

Exploitation Primitives

 Basic information of data transfer

 Heap Spray

 R/W related structures

 Bypass CFG

Basic information of data transfer
Guest Memory

 Guest’s physical memory is a map space
in vmx process’s memory space.

 Vmx process needs to translate a Guest’s
memory address(as phys) into process
address

 If the phys or size is illegal, translation
function will return a 4k heap memory,
or an array to store translated addresses

Basic information of data transfer
Translation

struct vmaddr_tran {

_QWORD translated_size_0h;

_DWORD page_offset_8h;

_DWORD page_count_Ch;

_QWORD tran_addr_10h;

_QWORD tran_array_18h;

…

};

Mark physmem[2071] as H1 at line 13

Basic information of data transfer
Translation

struct vmaddr_tran {

_QWORD translated_size_0h;

_DWORD page_offset_8h;

_DWORD page_count_Ch;

_QWORD tran_addr_10h;

_QWORD tran_array_18h;

…

};

Array stores results for each PFN

Basic information of data transfer
Free translated result

struct vmaddr_tran {

…

_DWORD page_count_Ch;

_QWORD tran_addr_10h;

_QWORD tran_array_18h;

…

};

Structure vmaddr_tran will be cleaned by
vm_addr_translate_free.

Basic information of data transfer
Examples

struct vmaddr_tran {

…

_DWORD page_count_Ch;

_QWORD tran_addr_10h;

_QWORD tran_array_18h;

…

};

Heap Spray

We can use SVGA’s shader buffer to stores controlled data with controlled size. The number
of this buffer is almost unlimited.

We can allocate it by svga command SVGA_3D_CMD_SET_SHADER

Notes: the details of how to send a svga command, you can watch this “Straight outta
Vmware, Zisis Sialveras”

R/W related structures

 SVGA MOB structure

+0x50 guestbuffer;// = vmaddr_tran->tran_addr_10h

+0x54 size;// size of guestbuffer

SVGA command SVGA_3D_CMD_DX_SURFACE_COPY_AND_READBACK allows us to copy
data between mobs.

 vmxnet3 mfTable

it can be used to write an arbitrary data from guest to a process heap. We can
control its allocation and release.

R/W related structures

 SVGA GMR buffer

It’s a MKS heap with tag
0xA0017. Each MKS heap has
an extra heap header.

Calculate real heap header:

Heap header = buff - *(u32
*)(buff-0xc)

MKSheader -->

Real heap
header -->

Return buffer
address -->

Bypass CFG

Base on 15.0.1

1. change dynamic function list to

function 0x1406DF450 which let

R9 points to a variable at

0x140ca1880 of .rdata segment.

Bypass CFG

Base on 15.0.1

2. change pointer to function

0x140115910, It will save data of

a1 to where the pointer in r9

indicates.

Attack Case of ESXi

 Bug

 Uninitialized to UAF

 R/W everywhere

 Control rip

based on ESXi-ver8941472

Bug: Uninitialized variable

 Vmtran is a stack variable of structure
vmaddr_tran

 When handling command
VMXNET3_CMD_UPDATE_MAC_FILTE
RS, it doesn’t check return value

Bug: Uninitialized variable

 Vmtran is a stack variable of structure
vmaddr_tran

 When handling command
VMXNET3_CMD_UPDATE_MAC_FILTE
RS, it doesn’t check return value

Transfer BUG to UAF

 In step 1.Addr = 0x2FF,XXXX,XF00; size is 0x2B0; array size = 0x30 * ((0xF00+0x2B0-
1)/0x1000+1) = 0x60

R/W everywhere

R/W everywhere

 Pad 0x1000-0x70 memory, let heap split a
0x70 block.

 Address translation fails over 9 times,
then H1 is returned.

 Use mob1 to change mob2’s size.

 Use SVGA command to read and write
data from a normal mob to mob2.

Control RIP

Attack Case of Workstation

 Bug

 Leak information

 R/W everywhere

 Bypass CFG

based on workstation 15.0.1

Bug: Integer Truncated

Leak Information

 Allocate many 0x60 blocks and try
to free several blocks. It has a
good possibility that mem and
mob are adjacent.

 Overflow mem to overwrite mob’s
size, then use svga command to
overflow read to leak process
related address from the memory
after H1.

Leak process related Addr

R/W everywhere

 Overflow again

mob1->guestbuffer => moblist
of .rdata segment.

 Fake a moblist

mob1->guestbuffer =>
svgaFifoCmdScratchSpace (It’s a svga
command buffer at .rdata segment).

 Use cmd
SVGA_3D_CMD_PRESENT to write
data to svgaFifoCmdScratchSpace.

Fake a moblist

R/W everywhere

 Fake mob points to VMmap offset

 SVGA_3D_CMD_SURFACE_COPY to read data from a mob to a svga buffer

 SVGA_3D_CMD_SURFACE_DMA to read data from a svga buffer to VM’s memory

 Faking two mobs. one points to somewhere we want to r/w, one points to our VM’s
memory.

Fake mobs to r/w between Guest with process

Bypass CFG

Use this skill to bypass CFG

Demo of ESXi

Conclusion

 Programmers should care about the returned function results.

 Creating an extra heap header without encoding is not a smart idea.

 Manufactures should add modern mitigation measures to their products.

 VM escape is not as hard as we expect.

Virtualization security is still a serious problem at present. We should be careful ☺

New Changes

To avoid to abuse mob structure, VMware Workstation 15.5.x stores mob structures

in .rdata segment instead of allocating a heap. But other primitives still work.

It’s easy to find a similar structure in svga ;)

VictorV(vv.ttw@outlook.com) Xiao Wei(xiaowei-c@360.cn)

