

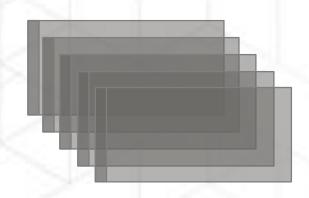
PESIDIOUS - Create Mutated Evasive Malware Using Artificial Intelligence

Bedang Sen

Incident Response Consultant, X-Force IRIS, IBM

Chandni Vaya
Incident Response Consultant, X-Force IRIS, IBM

Contents of this Presentation



Contents of this Presentation

Who are we?

Pesidious

Implementation

Project **Demo**

Future Work

Who are we?

Bedang Sen
Incident Response Consultant
X-Force IRIS, IBM

https://www.linkedin.com/in/bedangsen/

Chandni Vaya Incident Response Consultant X-Force IRIS, IBM

https://www.linkedin.com/in/chandni-vaya-519a05137/

Malware Mutation Using Reinforcement Learning and Generative Adversarial Networks

PESIDIOUS AI MUTATION SOLUTION

BENIGN FILE

Malware Mutation Using Reinforcement Learning and Generative Adversarial Networks

Malware Mutation Using Reinforcement Learning and Generative Adversarial Networks

Benign looking malware file

Reinforcement Learning

Agent

Environment

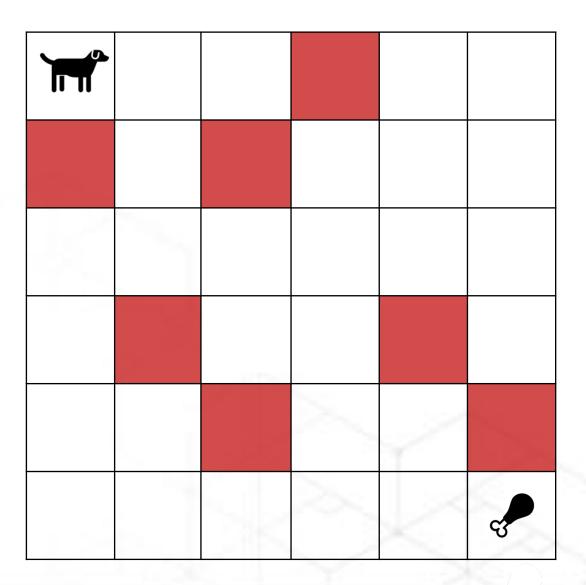
Goal

Q-Value (+ve)

State

Q-Value (-ve)

Actions



What is |

Reinforcement Learning

Y	1	1	→	+
>1	0	-0.51	0.7	0
2	0	0.84	0.5	0.2
4	0	0.87	0.64	0.05
34	0.34	0	0.86	0.21
35	0.55	0	1	0.31

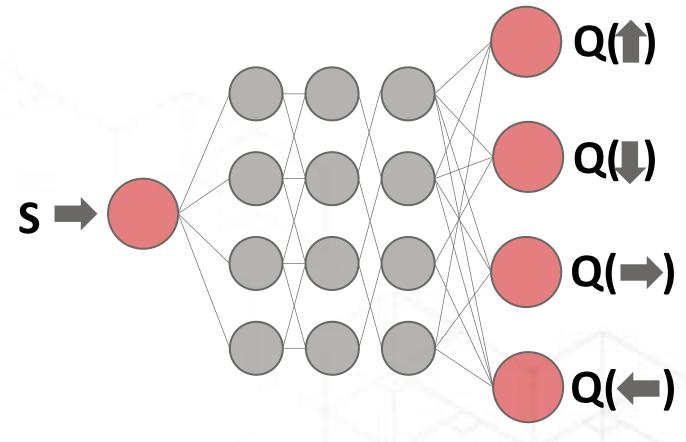
Q-TABLE

572			
		6	G

Whatis

Deep Reinforcement Learning

	<u>}_</u>	1	-	1	Į
	*	0	-0.51	0.7	0
	2	0	0.84	0.5	0.2
	4	0	0.87	0.64	0.05
	34	0.34	0	0.86	0.21
	35	0.55	0	1	0.31

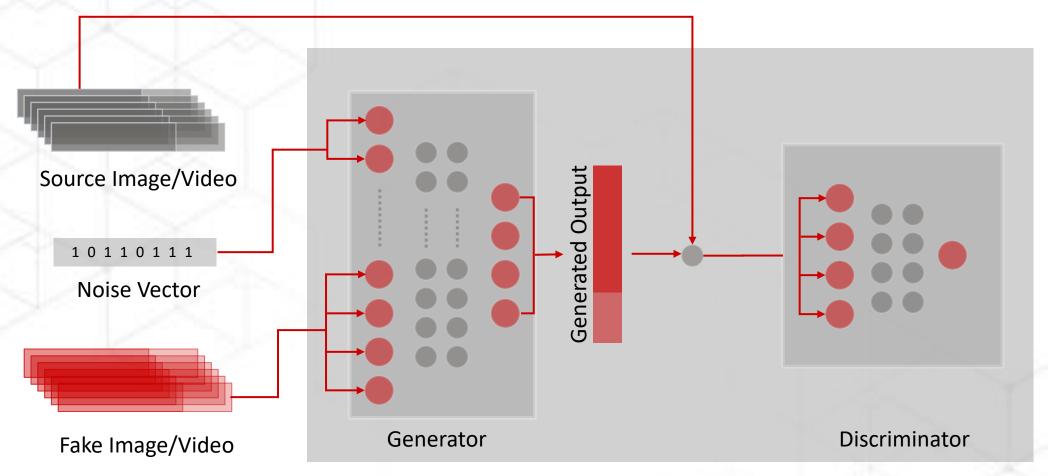


Q-TABLE

Neural Network

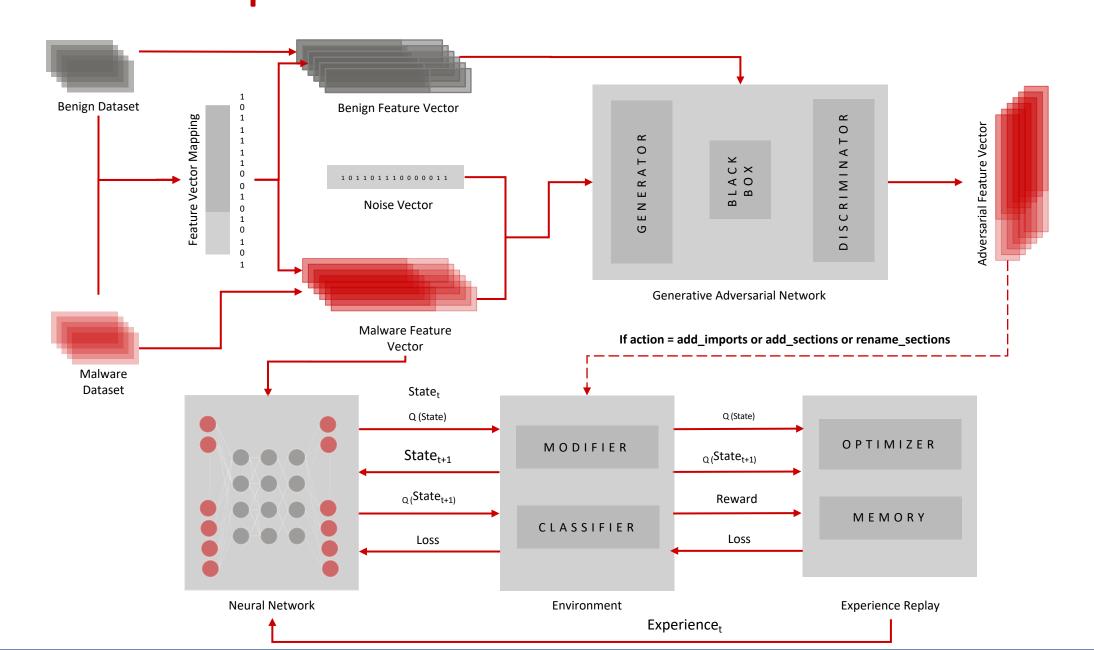
What is |

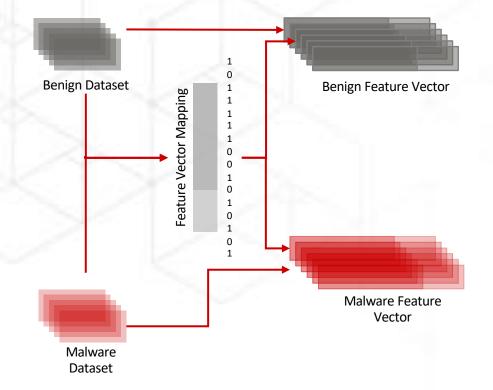
Generative Adversarial Networks



Generative Adversarial Network

Malware Mutation Using Reinforcement Learning and Generative Adversarial Networks

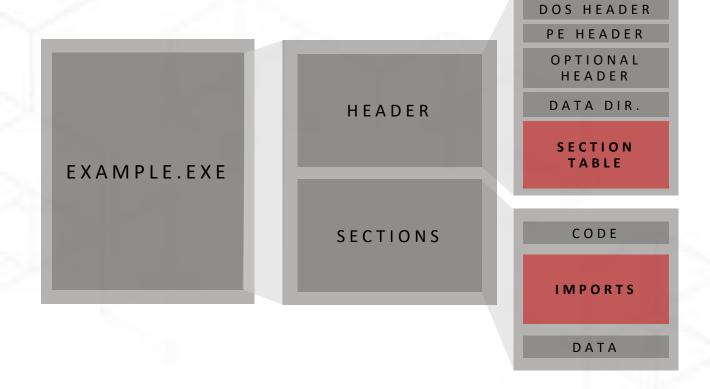




Collect the malicious and benign binary dataset.

- 2. Extract all the features into a single feature vector map
- Generate feature vectors for each binary data using the feature vector map

Implementation |



1

Implementation |

BENIGN FILE

Extracting Features into Feature Vector Maps

Number of sections

No of sections with

name

DLL

Functions

Debug flag

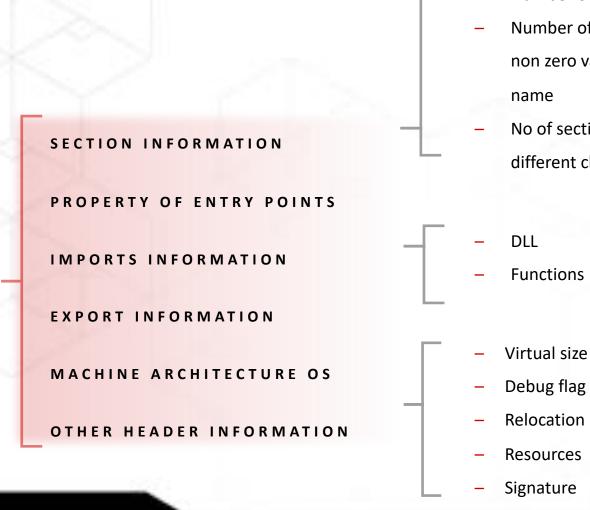
Relocation

Resources

Number of sections with

non zero value or empty

different characteristics

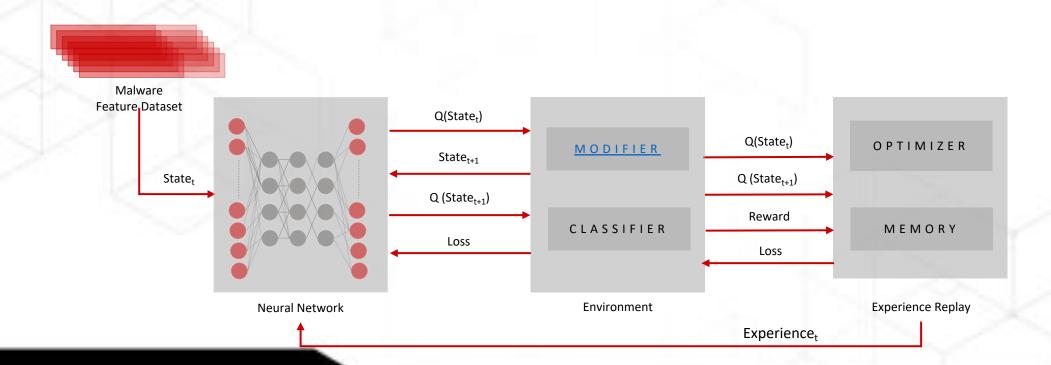


Feature Vector Mapping

Implementation |

Training a Deep Reinforcement Learning Agent

- 1. Implement the environment for the agent to learn.
- 2. Design a Deep learning model to select the actions based on the current state of the malware.
- 3. Use experience replay with prioritized replay buffer.



Implementation |

Training a Deep Reinforcement Learning Agent

MODIFIER

RANDOMLY ADDING IMPORT FUNCTIONS AND DLLS

RANDOMLY ADDING SECTIONS AND

RENAMING SECTIONS

APPENDING TO EXSITING SECTION

APPENDING RANDOM BYTES

REMOVING/ADDING SIGNATURE

REMOVING DEBUG FLAG

UPX PACK/UNPACK

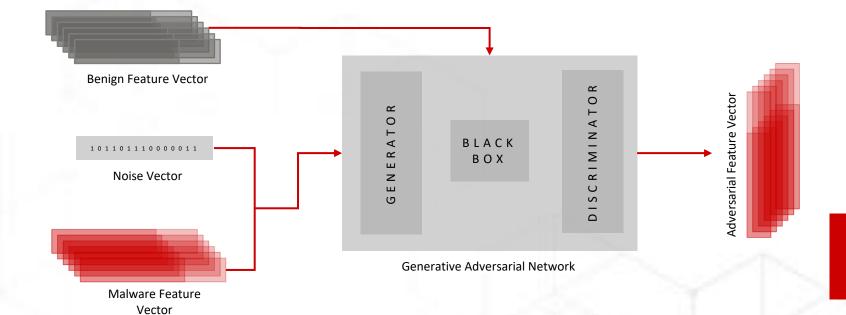
In

Implementation |

Generating Adversarial Feature Samples with Generative Adversarial Networks

1. Feature vectors are concatenated with noise and fed to the GAN.

The GAN generatesadversarial featurevectors.



DECISION TREE

LOGISTIC REGRESSION

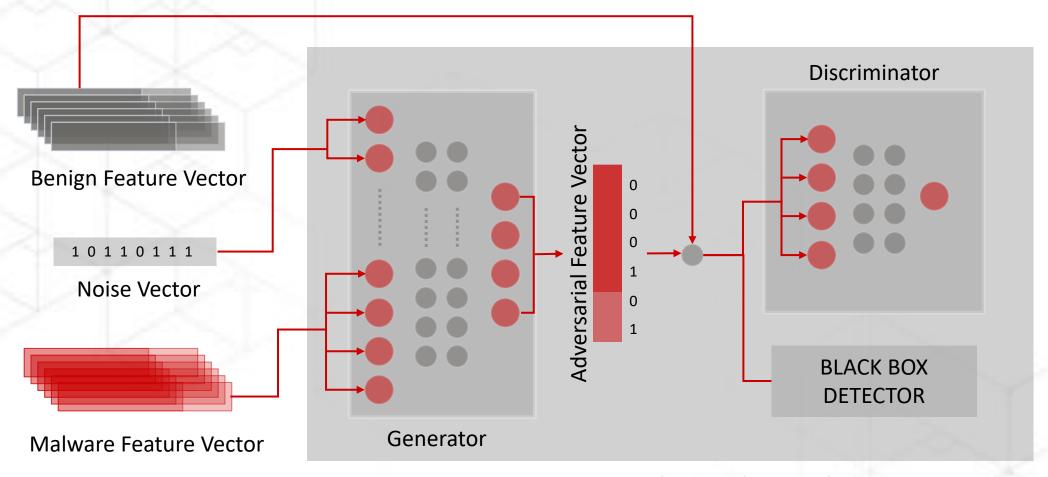
MULTI LAYERPERCEPTRON

RANDOM FOREST

S V M

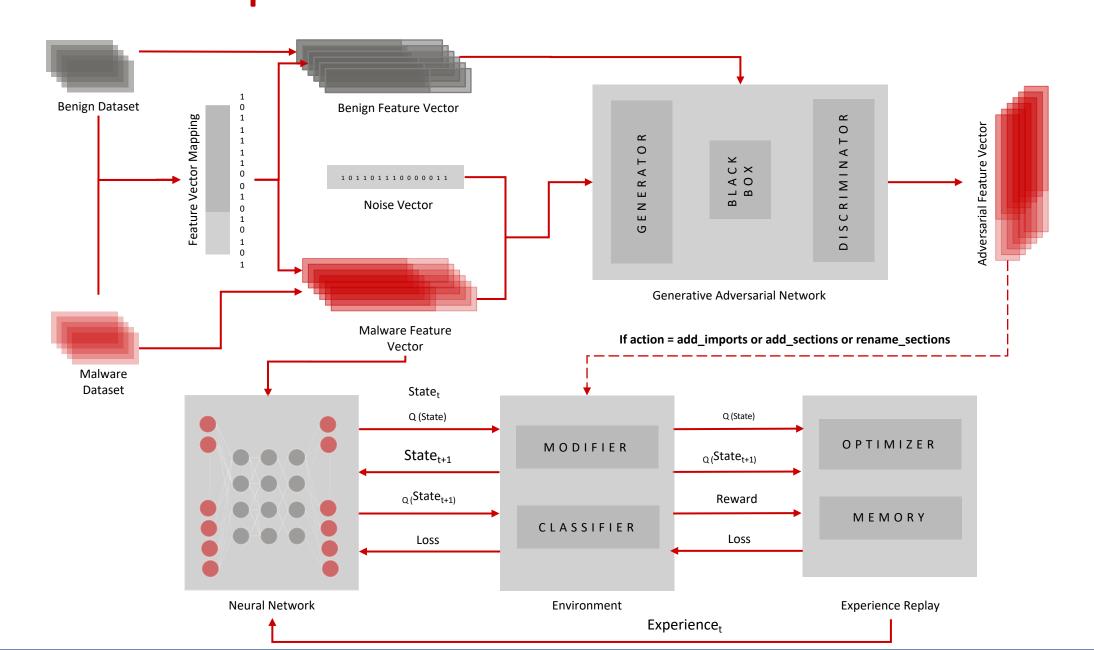
BLACK BOX

Understanding the Generative Adversarial Network

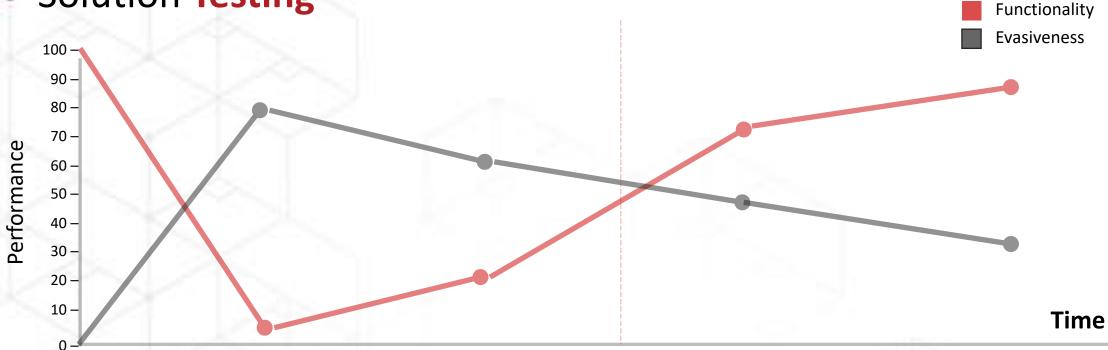


Generative Adversarial Network

Malware Mutation Using Reinforcement Learning and Generative Adversarial Networks



Solution **Testing**



- Maintaining the functionality:

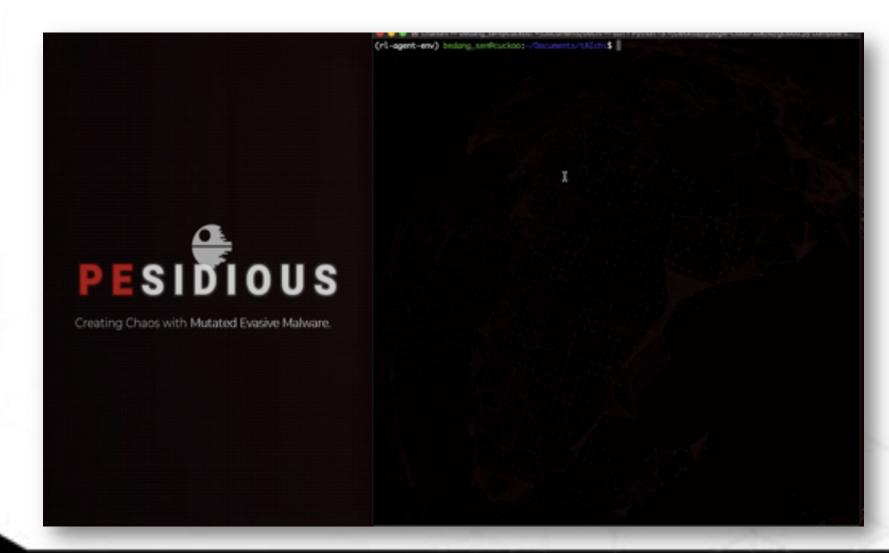
- Filtering out the PE32 files based on 32 bit
- Filtering out DLLs and sections
- Using C++ instead of Python for the malware reconstruction

- Improving performance:

- Using a combination of the machine learning models scores
- Initially we trained it with backdoors; now we are giving it more diverse

malwares

- For testing we made a comparison between AI and human



Project **Demo**

Run Our Mutated Malware In A Cloud Based Secure Sandboxed Environment.

Variant.Ransom.Cerber.171:

66 detected

https://bit.ly/2DaxtVz

Mutated Variant.Ransom.Cerber.171:

40% more evasive

100% functionality

https://bit.ly/32TFTLU

1. IMPROVE EVASIVENESS

2. MAINTAIN FUNCTIONALITY

PESIDIOUS

3. HELP THE NEXT-GEN ANTI-VIRUS SYSTEMS

