
Quark Engine – An Obfuscation-Neglect 
Android Malware Scoring System

KunYu Chen & JunWei Song
Security Researcher @ Telecom Technology Center



 KunYu Chen

 

JunWei Song
Security Researcher
CoFounder of Quark Engine

Security Researcher, 
Founder of Quark Engine

2



Outline

#1: Introduction of Malware Scoring System

#2: Design Logic of the Dalvik Bytecode Loader 

#3: Case Study of Malware Analysis Using Quark

#4: Detection Rule Generate Strategy

#3: Future Works

 

3



#1:

Introduction of 
Malware Scoring System

4



Intro. of Malware Scoring System

As we know, when developing a malware 
analysis engine.

It is important to have a scoring system.

However, those systems are either
Business secretes or too complicated

Therefore, we decided to create
A simple but solid one

And take that as a challenge

5



Intro. of Malware Scoring System

And since we wanted to design
A novel scoring system.

We stop reading and decoding
What other people do in the field of cyber security

Because we don’t want our ideas
To be subjected to existing systems

6



Intro. of Malware Scoring System

We started to find ideas
In fields other than cyber security

And luckily, we found one

7



Intro. of Malware Scoring System

The Best Practice We Found:

Criminal Law!!!!

8



Intro. of Malware Scoring System

Decoding the law
When sentence a penalty for a criminal.
The Judge weights the penalties 
based on the criminal law.

Principles behind the law
Based on the decoded principles
We developed a scoring system for Android malware!

9



Intro. of Malware Scoring System

Principle # 1 A malware crime consists of 
action and target 

Decoded principle
Definition: A crime consists of action and target
E.g.: Steal Money, Kill People.

Quark principle
Definition: 
Malware crime consists of action and target.
E.g.: Steal photos, Steal banking account passwords.

10



Intro. of Malware Scoring System

Principle # 2 Loss of fame > Loss of wealth

Decoded principle
Physical Body Injury(death)
Is more serious than 
Psychological Injury(intimidate)
*  Hard to recover = Felony

Quark principle
Loss of fame > Loss of wealth
Because it’s easier to make money back
than rebuild your reputation.

11



Intro. of Malware Scoring System

Principle # 3 Arithmetic Sequence

Decoded principle
When a murderer is sentenced 20 years 
in prison for the crime. 
Robber (7 years)
Why 20 and 7 years? 
No obvious principle can be decoded.

Quark principle
We use arithmetic sequence 
to weight the penalty of each crime.
Eg. y1 = 10, y2 = 20, y3 = 30

12



Intro. of Malware Scoring System

Principle # 4 The latter the stage, the more 
we’re sure that the crime is practiced. (The 
order Theory)

Decoded principle
Order theory of criminal 
Explains the stages of committing a crime.

As mentioned in chapter 4 
of Taiwan Criminal Law

Each crime consists of a sequence of behaviors.
Those behaviors can be categorized (stages) 
in a specific order.

13



Intro. of Malware Scoring System

Principle # 4 The latter the stage, the more 
we’re sure that the crime is practiced. (The 
order Theory)

For Instance: Murder

14



Intro. of Malware Scoring System

Principle # 4 The latter the stage, the more 
we’re sure that the crime is practiced. (The 
order Theory)

Android Malware Crime Order Theory

android.permission.SEND_SMS
android.permission.ACCESS_CORSE_LOCATI
ON
android.permission.ACCESS_FINE_LOCATIO
N

getCellLocation() getCellLocation()
sendTextMessage()

getCellLocation()
sendTextMessage()

The location data

15



Intro. of Malware Scoring System

Principle # 4 The latter the stage, the more 
we’re sure that the crime is practiced. (The 
order Theory)

Android Malware Crime Order Theory

Crime # 1
We have found 
native APIs called 
in a correct 
sequence and 
they’re handling 
the same register 

Crime # 5
We have found 
certain 
combination of 
native APIs called

16



Principle # 5 The more evidence we caught, 
the more weight we give.(The order Theory)

Quark principle
Stage 2 is given more weight 
than stage 1.

x2 > x1

Intro. of Malware Scoring System

17



Intro. of Malware Scoring System

Principle # 6 Proportional Sequence (The 
order Theory)

Decoded principle
The latter the stage 
the more we’re sure that the crime is practiced.

Quark principle
We use proportional sequence to present such principle.

18



Intro. of Malware Scoring System

Principle # 7 Crimes are independent events

Quark principle
For simplicity, we assume crimes are independent events.
And can add up penalty weights directly.

19



Intro. of Malware Scoring System

Principle # 7 Crimes are independent events

Steal Photos

(Penalty weight of crime) * 
(Proportion of caught evidence)

[5*(2^2/2^4)=1.25]

Steal Banking Account Password
[1*(2^4/2^4)=1]

Total Penalty Weight
1.25 + 1 = 2.25

20



Intro. of Malware Scoring System

Principle # 8 Threshold Generate System

Decoded principle:
No obvious principles for threat level thresholds.

Quark principle:
To design a threshold generate system.
Not Just give any number by intuition.

21



Intro. of Malware Scoring System

Principle # 8 Threshold Generate System

Quark principle:
To design a threshold generate system.
Not Just give any number by intuition.

5 threat levels:
Threshold for each level is the sum of
(Same proportion of caught evidence)

multipies
(Penalty weight of crimes)  
 

Not Perfect:
Build a foundation for future optimization!

22



#2:

Design Logic of 

Dalvik Bytecode Loader

23



Design Logic of 
Dalvik Bytecode Loader (DBL)

DBL is the implementation of the Android 
malware crime order theory.

5 stages:

First 3 stages:
We simply use APIs in androguard 
to implement the first 3 stages.

24



Design Logic of 
Dalvik Bytecode Loader (Stage4)

5 stages:

Stage 4:
We need to find the calling sequence of native APIs.
E.g. Crime: Send Location data via SMS

Landroid/telephony/SmsManager
sendTextMessage

Landroid/telephony/TelephonyManager
getCellLocation

25



Design Logic of 
Dalvik Bytecode Loader (Stage4)

Finding calling sequence of native APIs:
Find mutual parent function

Landroid/telephony/SmsManager
sendTextMessage

Landroid/telephony/TelephonyManager
getCellLocation

sendSms()

Lcom/google/progress/AndroidClientService
sendMessage()

getLocation()

26



Design Logic of 
Dalvik Bytecode Loader (Stage4)
Smali-like code of sendMessage():

Malware hash: 14d9f1a92dd984d6040cc41ed06e273e

sendSms()

getLocation()

27



Design Logic of 
Dalvik Bytecode Loader (Stage4)

Obfuscation-Neglect:
Magic!

Landroid/telephony/SmsManager
sendTextMessage

Landroid/telephony/TelephonyManager
getCellLocation

k()

e()

Lcom/ab/cd/ef;->a()

f()

28



Design Logic of 
Dalvik Bytecode Loader (Stage5)

Stage 5:
We need to confirm that if the native APIs 
are handling the same register.

Landroid/telephony/SmsManager
sendTextMessage

Landroid/telephony/TelephonyManager
getCellLocation=location_data

outputinput

29



Design Logic of 
Dalvik Bytecode Loader (Stage5)

Simulating CPU Operation:
Read line by line 
of the smali-like 
code. 

And operate like 
CPU to get 

1. The value of 
every 
register

2. Information 
like 
functions who 
have operated 
the same 
register 

30



Register Object
It’s a self-defined data type.

Design Logic of 
Dalvik Bytecode Loader (Stage5)

Register Name

RegisterValue

Used_by_which
_function

v7

v7 = append(str1, FUNC1())

FUNC2(v7)

31



sendSms(v7)

Expand Every Register 
Every time when the value of Used_by_which_function 

is filled.

   We produce lots of register objects.

Design Logic of 
Dalvik Bytecode Loader (Stage5)

v7

append(“User location”, getLocation())

sendSms(
append(

“User location:”,
getLocation()
 )

  )

API2

API1

Expand Every Register 

v7

append(v8, v3)  

32



Register Objects are organized with
Two-Dimensional Python List

Similar idea like the hash table to boost up r/w of 
the list.

Design Logic of 
Dalvik Bytecode Loader (Stage5)

v3

v1

v2

v6

v5

v4

RegisterObject

RegisterObject RegisterObject RegisterObject

RegisterObject RegisterObject

[
 [RO1],
 [],
 [],
 [RO2,RO3,RO4],
 [],
 [RO5,RO6]
]

33



Finish constructing the hash table 
We then scan through all register objects to check

If APIs are handling the same register.

Design Logic of 
Dalvik Bytecode Loader (Stage5)

34



#3:

Case Study of 
Malware analysis using

Quark Engine
35



Case Study of Malware Analysis

Two malware

Non-Obfuscated: 14d9f1a92dd984d6040cc41ed06e273e

Obfuscated: 76db25ce55dc2738a387cbbb947f32f0

For each malware
Show how we detect the behavior of the malware

with detection rule

36



Case Study of Malware Analysis

Malware #1

Non-Obfuscated:   14d9f1a92dd984d6040cc41ed06e273e

Detection Rule:
Detect whether if the malware 

sends out cellphone’s location data via SMS.

37



Case Study of Malware Analysis

38



Source Code - sendMessage 

Native API 
getCellLocation()
inside!

Native API 
sendTextMessage()
inside!

39



Get Cell Location

Return location info

Source Code - getLocation

40



Source Code - sendSms

41



Case Study of Malware Analysis

Malware #2

Obfuscated:   76db25ce55dc2738a387cbbb947f32f0

Detection Rule:
Detect whether if the malware 

Detect WiFi Hotspot by gathering information 

Like active network info and cell phone location.

42



Case Study of Malware Analysis

43



Source Code - p.a 

Native API 
getActiveNetworkInfo()
inside!

Native API 
getCellLocation()
inside!

44



Source Code - ap.a 

45



Source Code - p.a 

46



47



Source Code - p.a 

48



Source Code - am.a 

 

 

49



#4:

Detection Rule 

Generate Strategy

50



Detection Rule Generate Strategy

Why?
To make our engine practical and easy to use, we need 
to have more detection rules.

The speed of rule generated by human is quite slow.

And the human-generated rule is subjected to his/her
experiences of malware analysis.

So, we developed a rule generate strategy to boost up 
the production of detection rules. 

51



Detection Rule Generate Strategy
Permissions x Native APIs x Native APIs ≌ 

1.26252e+13 rules 

We use quark engine to find the intersection 

of the rules and the malware. 

However, it’s time and resource consuming! 52

Rules 
to be

validated
Malware



Detection Rule Generate Strategy

7-Step Rule Generate Strategy
Step 1: We crawled down all native API information on 

Android official API reference.

53



Detection Rule Generate Strategy

7-Step Rule Generate Strategy
Step 2: We did a little bit modification to our 
engine. We ignore the permission checks in stage 1 of 
the Android Malware Crime Order Theory. 

Step 3: We find all kinds of API combination. And 
generate rules without permission information.

 

54



Detection Rule Generate Strategy
 7-Step Rule Generate Strategy

Step 4: Modified quark engine is used to find the 
intersection (first stage verified rules). 

And since we don’t need to generate rules with 
permission and verify the permission in quark engine.

The whole process of rule production speeds up  
55

Rules 
Without

permission
Malware



Detection Rule Generate Strategy
Step 5 Generate rules with permissions

56

Rules 
Without

permission
Malware

1st stage verified 
rules (without 
permission)

Permissions used in 
the Malware 
(matched with 
rules)

Rules with 
permission



Detection Rule Generate Strategy
Step 6 Label number of matched malware in 
rules

57

Rules 
with

permission
Malware

Validated 
Rule #1

100 malware 
matched 

Validated 
Rule #2

90 malware 
matched 

Validated 
Rule #3

80 malware 
matched 

Validated 
Rule #4

70 malware 
matched 



Detection Rule Generate Strategy
Step 7 Review the rules by human

58

Validated 
Rule #1

100 malware 
matched 

Validated 
Rule #2

90 malware 
matched 

Validated 
Rule #3

80 malware 
matched 

Validated 
Rule #4

70 malware 
matched 



#5:

Future Works

59



Future Works 
1. More rules.
2. .so files analysis
3. Packed apks.
4. More features on Dalvik bytecode loader

Downloader
5. Apply the scoring system to other binary formats
6. Different versions of Android API
7. Change of core library

Androguard is inactive.

60



#:
We work at the limit of our tools.

When new tools come along, new things are possible.

Sam Altman 

61



62



KunYu Chen(xspiritualx@gmail.com) & JunWei Song(sungboss2004@gmail.com) 63


