
Amsterdam – April 12 th, 2018

Piergiovanni Cipolloni
Security Advisor

@Mediaservice.net S.r.l.
(piergiovanni.cipolloni@mediaservice.net)

• ~ 20 years in Penetration Testing
• Security researcher

mailto:federico.dotta@mediaservice.net

Federico Dotta
Security Advisor

@Mediaservice.net S.r.l.
(federico.dotta@mediaservice.net)

• OSCP, CREST PEN, CSSLP
• 8+ years in Penetration Testing
• Focused on application security
• Developer of sec tools:

https://github.com/federicodotta
• Trainer

mailto:federico.dotta@mediaservice.net
https://github.com/federicodotta

• Fixed client (web browser)

• Logic is usually mainly on
the backend components

• Client-side application
code is usually coded with
interpreted languages

• Provisioned directly from
the application server

• Custom compiled client

• Logic is usually divided
between client and
backend

• Client-side application
code can be interpreted or
compiled

• Provisioned from a trusted
third party

It’s almost impossible to properly test a complex mobile
application without skills in:

• Reversing (compiled Java/C code for Android,Objective-
C/Swift code for iOS applications)

• Instrumentation and debugging

• Development of custom plugins for your favorite HTTP
Proxy (Burp Suite, OWASP ZAP)

• Suite of tools that helps penetration testers during assessments

• It contains a lot of powerful tools: HTTP Proxy, Intruder (fuzzer),
a great automatic Scanner and a Repeater tool

• Furthermore, it offers a server very useful to test external
service interactions (Collaborator) and a excellent session
manager

• It exports APIs to extend its functionalities, and consequently a
huge number of plugins have been released by various
developers to aid pentesters in almost any situation

• It is de-facto standard for web application security testing.

From ZERO NIGHTS - http://2015.zeronights.org/assets/files/23-Ravnas.pdf

• Let’s take as an example a mobile application that
uses symmetric crypto with random keys in addition to TLS to
encrypt the POST bodies of all requests

• These random keys could be generated from a secret stored
inside mobile device’s protected areas (Secure Enclave)

• Also, supposing we know the secrets and all the details
regarding the employed encryption algorithm, a complex Burp
Suite plugin would be necessary to decrypt incoming requests
and encrypt outgoing ones

• It acts as a bridge between Burp Suite and Frida

• Allows to call mobile application’s functions directly from
Burp Suite using Frida

• It is possible to code simple Burp Suite plugins that call
mobile application’s functions in order to execute complex
tasks (for example encryption, hashing, signing, encoding)
without having to fully understand how these complex
tasks are accomplished and without having to reimplement
them in our plugin

Brida
(Brida.jar)

Custom
plugin with
Brida stub
(optional)

Burp Suite Pyro4

Pyro4 Server
(bridaService
Pyro.py)

Frida

Frida server
(script.js)

Tester notebook Mobile device

• Thanks to the «rpc» object of Frida it is possible to expose
RPC-style functions

• From Burp Suite we call a Pyro function that acts as a
bridge

• Pyro calls the selected Frida exported function and returns
the result back to Burp Suite

• Dedicated tab to call Frida
exported functions and
methods

• Context menu entries that
call Frida exported
functions

• Dedicated tab that
generates code stubs for
custom plugins

• Integrated JS editor

• Integrated Frida console

• Dedicated tab to analyze
target binary

• Graphical hooking of
functions for inspection

• Graphical hooking of
functions for replacement

• Objective-C classes and methods graphical tree (iOS only)

• Java classes and methods graphical tree (Android only)

• Library imports and exports on all Frida supported
platforms!

• «Search» functionality on Objective-C and library imports
and exports (Java not supported due to Frida’s current
limitation on the «API Resolver» component)

• By right-clicking on a method (Objective-C or Java) or an
exported function it is possible to «inspect» that method/
function

• From the click onwards, every time that the inspected function
is executed in the binary, input parameters and return value will
be printed out in the integrated output console

• It is also possible to inspect an entire Objective-C or Java class
(all the contained methods will be hooked)

• «Print Backtrace» option is also available

• By right-clicking on a method Objective-C or Java) or an
exported function it is also possible to change the return
value of that method/ function

• Integer, String, Boolean and pointer are the supported
return types, at the moment

• This functionality can be very useful to quickly bypass
some security features (like «SSL pinning» or
«Jailbreak/Root check»)

• An application that encrypts the body of all requests and
responses with a custom and heavily-obfuscated algorithm

• An application that signs the body of all requests

• An application that periodically executes a challenge-
response routine with the backend, computing the
response based on complex and heavily-obfuscated logic

• Testing applications that employ complex security features
as the ones described in the previous slide is a mess!

• The job usually requires:
• A lot of reversing to understand encryption and other security

features (often heavily obfuscated!)

• A lot of coding, in order to re-implement those features in a Burp
Suite plugin

• … because if we don’t implement a plugin for our favorite HTTP
proxy we are not able to thoroughly pentest the backend!

• Handling these situations with Brida is simpler and faster:
• The reversing job is aimed only at finding functions used by the

application to implement security features without the need to
understand how these features are implemented nor how they work!

• We will still need to code a Burp Suite plugin, but a very simple one
with few lines of code which only calls the mobile functions instead of
having to re-implement them, thanks to Brida and Frida!

• We add an exported function to Frida JS that calls the mobile
functions we need, and we call that exported function from our
plugin

• Three different use cases

• Each use case is a simplification of a real situation we faced
during penetration tests conducted on mobile applications

• In all those situations Brida was almost essential

• We have a simple iOS app
that provides a search
functionality

• If we click on the «Search»
button, the results are
printed below the search
form

Search

EK(«apple»)

Search

EK(«apple»)

Response

EK(«Red apple»)

Response

EK(«Red apple»)

Request: EK(«apple»)
Response: EK(«Red apple»)

No inspection - NO tampering

Search

EK(«apple»)

Search

EK(«apple»)

Response

EK(«Red apple»)

Response

EK(«Red apple»)

Request: «apple»
Response: «Red apple»

inspection

EK(«apple»)

decrypt(
EK(«apple»))

EK(«Red apple»)

Search

EK(«apple»)

Search

EK(«lemon»)

Response

EK(«Lemon Sicily»)

Response

EK(«Lemon Sicily»)

Old request: «apple»
New request: «lemon»

tampering

«lemon»

encrypt(
EK(«lemon»))

• We have a simple iOS app
with two buttons:
«Register» and «Make
request»

• Once registered, by clicking
on the «Make request»
button it is possible to get a
Super Mario quote!

Register

deviceId

Register

OKOK

deviceId

Get quote

deviceId

Get quote

QuoteQuote

deviceId

Get quote Get quote

ChallengeChallenge

Response Response

QuoteQuote

Request 1

Request …

Request 10

Request 11

Quote 1

Quote …

Quote 10

Challenge

Request 12

Request 13

Challenge

Challenge

No scanner - NO intruder

Request 10

Request 11

Quote 10

Challenge

getResponse(
Challenge)

Challenge

Response

Quote 11

Request 12

Quote 12

OK SCANNER – OK INTRUDER

• We have a simple iOS app
with a login form

• The application returns
«User logged in» if the
correct username and
password are inserted,
«Wrong
username/password»
otherwise

Login

admin/EK(«password»)

Login

Response

«User logged in»

Response

Request: admin/EK(«password»)

admin/EK(«password»)

«User logged in»

qwertee

password

1234567

0000000

Error

1111111

123qwe

Error

Error

No scanner - NO intruder

Error

Error

Error

Ek(qwerty)

Ek(password)

Login failed

encryptPassword
(«qwerty»)

qwerty

Login failed

Ek(0000000)

Login failed

OK SCANNER - OK INTRUDER

Ek(1234567)

Hello admin!

• Brida repo: https://github.com/federicodotta/Brida

• Brida releases: https://github.com/federicodotta/Brida/releases

• Burp Suite: https://portswigger.net/burp

• Frida: https://www.frida.re/

• Article that describes Brida (0.1):
https://techblog.mediaservice.net/2017/07/brida-advanced-
mobile-application-penetration-testing-with-frida/

https://github.com/federicodotta/Brida
https://github.com/federicodotta/Brida/releases
https://portswigger.net/burp
https://www.frida.re/
https://techblog.mediaservice.net/2017/07/brida-advanced-mobile-application-penetration-testing-with-frida/

CONGRATULATIONS MARIO!

AUTHORs

FEDERICO DOTTA - Piergiovanni cipolloni

REVIEW

MAURIZIO AGAZZINI - Marco Ivaldi

THANKS

MATTIA VINCI

LICENSE

CREATIVE COMMONS

http://pngimg.com/download/30587

http://pngimg.com/download/30532

http://pngimg.com/download/30516

http://pngimg.com/download/30540

http://pngimg.com/download/30595

http://pngimg.com/download/30521

http://pngimg.com/download/30534

http://pngimg.com/download/30545

http://pngimg.com/download/30551

http://pngimg.com/download/30555

http://pngimg.com/download/30548

http://pngimg.com/download/30539

http://pngimg.com/download/30480

http://pngimg.com/download/30588

http://pngimg.com/download/30584

Image LIST (ALL licensed UNDER CC 4.0)

Disclaimer

This presentation is neither owned by nor affiliated with Nintendo or the creators of
the Mario franchise in any way. stuff related to super Mario is copyrighted by

Nintendo and other parties that have a direct proximity of relationship with the
Mario franchise. The images used in this presentation are all released under Creative

commons 4.0 license.

