

Covert Data Exfiltration Channel to Circumvent Air Gapping

Hongjian CAO, Kunzhe CHAI, Jun LI PegasusTeam, 360 Security Technology April 12, 2018

Who We Are

360 Security Technology is a leading Internet security company in Asia. Our core products are anti-virus security software for PC and cellphones.

PegasusTeam was founded in 2015. we focus on the wireless security and wireless penetration testing.

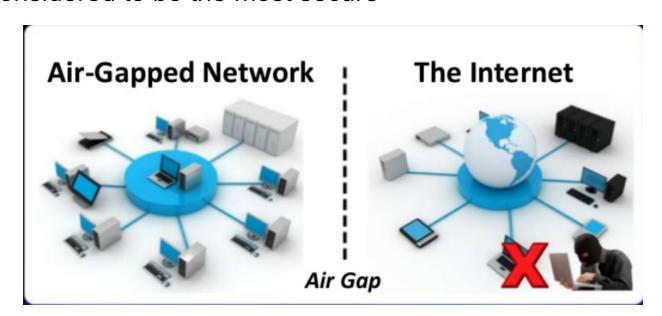
Agenda

- Introduction
- Previous research on Air-Gapped attack
- Ghost Tunnel Introduction
- Ghost Tunnel implementation
- demo

Introduction

- Air-Gapping
- Attack events

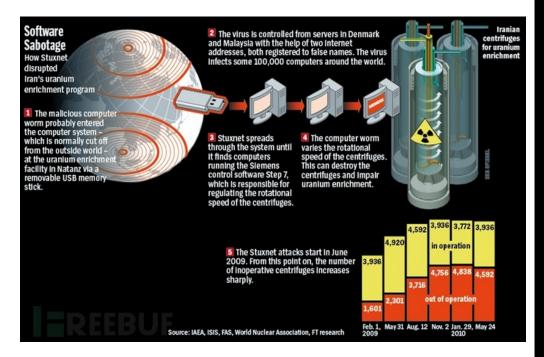
Air Gapping



- Air gapping
 - Wikipedia: "air gapping^[1] is a <u>network security</u> measure employed on one or more computers to ensure that a secure <u>computer network</u> is physically isolated from unsecured networks, such as the public <u>Internet</u> or an unsecured <u>local area network</u>.^[2] The name arises from the technique of creating a network that is physically separated (with a conceptual *air gap*) from all other networks."
- Air gapping aims to avoid the intrusion and data leakage through network connections

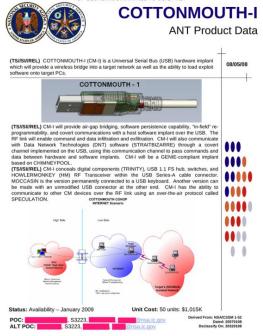
Considered to be the most secure

Nothing Is Impossible



- Attack Vectors
 - Malicious USB
 - Employee's laptop

- Attacking initiated via an infected USB drive
- Designed to sabotage centrifuges used at a uranium enrichment plant in Iran



NSA Leaks (2013)

COTTONMOUTH-I

- A USB hardware implant
- Air-Gap bridging
- Extracting data from targeted systems via RF signals

TOP SECRET//COMINT//REL TO USA, FVEY

TOP SECRET//COMINT//REL TO USA, FVEY

Previous research on Air-Gapped attacks

Previous research - 1

- Using radio frequencies to transmit data from a computer
 - Computer monitor
 - Mobile phone FM radio receiver

url: https://thehackernews.com/2014/10/airhopper-hacking-into-isolated.html

 A covert bi-directional communication channel between two close by air-gapped computers communicating via heat

Data exfiltration via RF signal by attacking Siemens PLCs

url: https://www.blackhat.com/eu-17/briefings.html#exfiltrating-reconnaissance-data-from-air-gapped-ics-scada-networks

A Covert Data Exfiltration Channel Using WiFi

- Implant
 - Malicious software/hardware
- A covert communication channel
 - Any medium that can carry data is possible

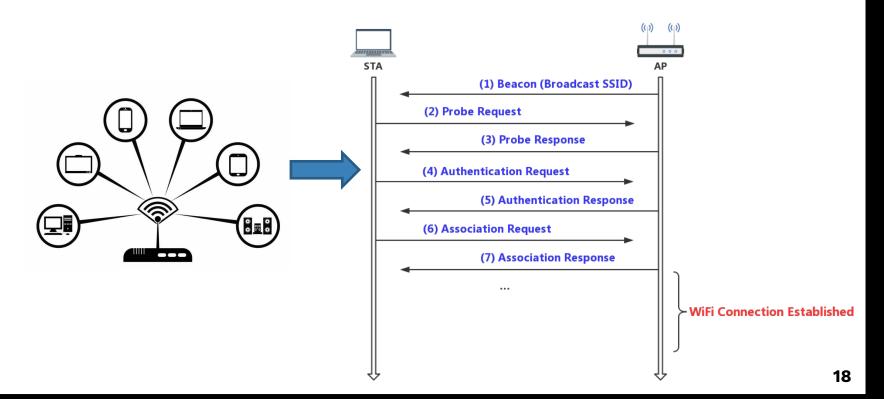
Implant malware

- USB HID attack
- BashBunny

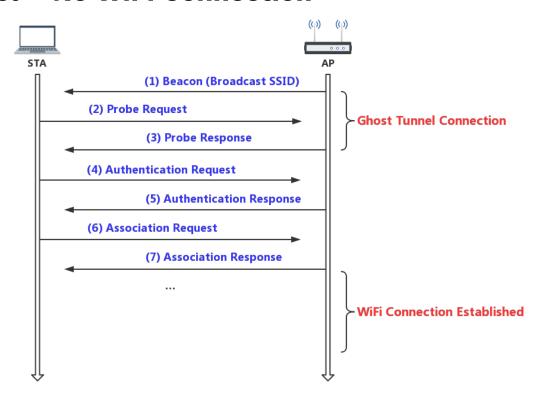
Setup C&C tunnel

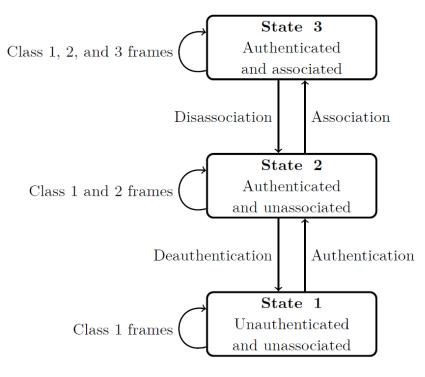
 Via 802.11 beacon and probe request & response

Exfiltrate data


Execute Command

- Can bypass firewalls
- Cross-Platform support
- Allow up to 256 clients
- Effective range up to 50 meters

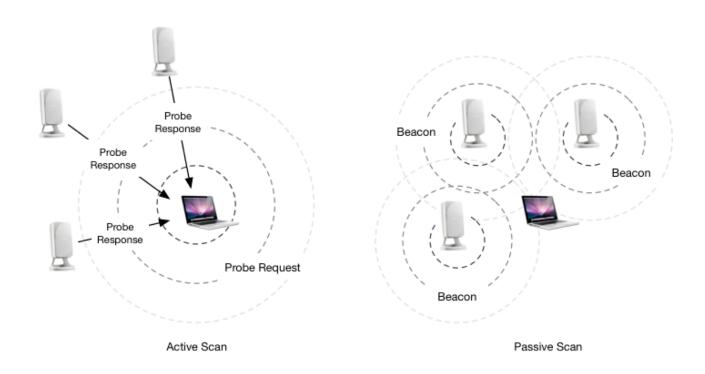

The Usual Wifi Connection Process



Ghost Tunnel - No WiFi Connection

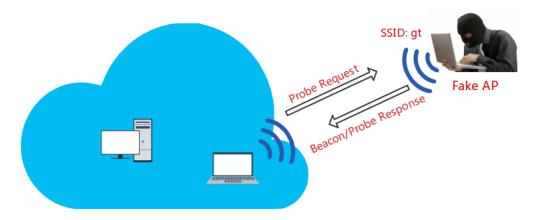
802.11 State

20



Control	Management	Data			
RTS	Probe Request	Frame w/DS bits false			
CTS	Probe Response				
Ack	Beacon				
CF-End	Authentication				
$\overline{CF\text{-}End\!+\!CF\text{-}Ack}$	Deauthentication				
	ATIM				

Scanning for Wifi Networks



Ghost Tunnel - No WiFi Connection

- A covert WiFi channel using Beacon, Probe Request, Probe Response
- A special SSID as the identifier

Ghost Tunnel Implementation

- Control frame
- Management frame
- Data frame

Octets: 2	2	6	0 or 6	0 or 6	0 or 2	0 or 6	0 or 2	0 or 4	variable	4
Frame	Duration	Address	Address	Address	Sequence	Address	QoS	HT	Frame	FCS
Control	/ID	1	2	3	Control	4	Control	Control	Body	

Frame header

- Management Frame Body
 - Fields
 - Information Flements

```
⊞ 🖫 [0-23]
              802.11 MAC Header Version=0 Type=%00 Management S
□ 🔐 802.11 Management - Beacon
   Timestamp:
                        1205199872409 Microseconds [24-31]
   Beacon Interval:
                        100 [32-33]

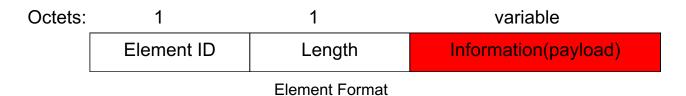
☐ Capability Info=%0000010000110001

     SSID ID=0 SSID Len=6 SSID=f4a201
 Rates= ID=1 Rates: Len=8 Rate=1.0 Mbps Rate=2.0 Mbbs Rate=5
 ⊞ TDSPS= ID=3 DSPS: Len=1 Channel=11
 ⊞ 〒 TIM= ID=5 TIM: Len=4 DTIM Count=0 DTIM Period=1 Bitmap Cont.
 ⊞ 🖫 Extended Supported Rates ID=50 Extended Supported Rates Le:
 ⊞ THT Cap= ID=45 HT Cap: Len=26
 ⊞ ₩ HT Info= ID=61 HT Info: Len=22 Primary Channel=11
 H 🔐 🔐 WPA ID=221 WPA Len=22 OVI=00-50-F2-01 Version=1 Multicast c

    ₩MM ID=221 WMM Len=24 OUI=00-50-F2 Microsoft OUI Trpe=2 OUI

→ Vendor Specific ID=221 Vendor Specific Len=30 OUI=00-90-4C

    ▼ Vendor Specific ID=221 Vendor Specific Len=26 OVI=00-90-4C


    ₩ Vendor Specific ID=221 Vendor Specific Len=6 OVI=0D-E0-4C V

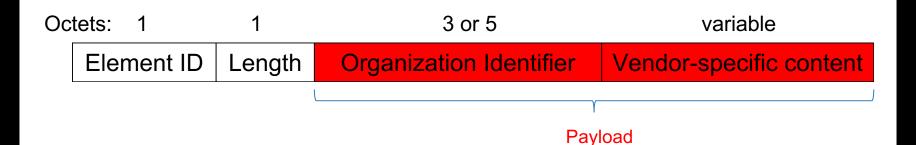
 ₩ Vendor Specific ID=221 Vendor Specific Len=13 OVI=33-36-30
```


The components of Information Element

- Element ID: 1 Byte
- Length: 1 Byte
- Information: 0-255 Bytes
 - SSID
 - Vendor Specific

SSID Element

- Identity of an ESS or IBSS
- SSID length 0-32 Bytes


Octets: 1 1 0-32

Element ID Length SSID(Payload)

Vendor Specific Element

- ID = 221
- Organization Identifier
- Vendor-Specific content

Key Problem

 How to send and receive 802.11 data frames through local wireless network interface in user space?

- Wireless network interface mode
 - Master (Acting as an AP)
 - Managed (Station)
 - Monitor (Monitor all traffic)
 - ...

Through Operating System WiFi API

- Windows
 - Native Wifi API
- Mac OSX
 - coreWLAN
- Linux
 - nl80211 & libnl

Windows Client: Send And Receive

- scan for available wireless networks
 - pDot11Ssid, specifies the SSID of the network to be scanned
 - pleData != NULL, send probe request
 - pleData == NULL, not send probe request

Packet payload Format

- DOT11 SSID
 - Contains the SSID
 - The maximum length is 32

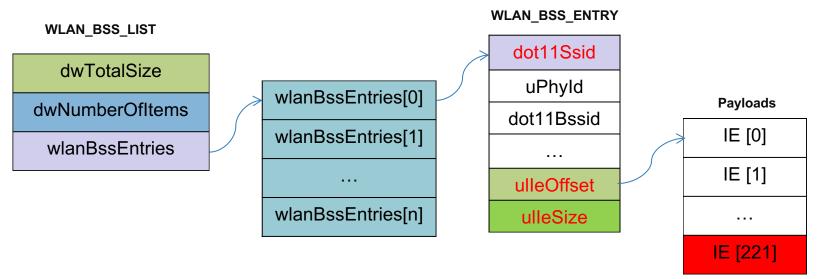
```
typedef struct _DOT11_SSID {
   ULONG uSSIDLength;
   UCHAR ucssid[DOT11_SSID_MAX_LENGTH];
} DOT11_SSID, *PDOT11_SSID;
```

uSSIDLength ucSSID (payload)

- WLAN RAW DATA
- - Contains the elements data
 - Not exceed 240 bytes

```
typedef struct _WLAN_RAW_DATA {
   DWORD dwDataSize;
   BYTE DataBlob[1];
} WLAN_RAW_DATA, *PWLAN_RAW_DATA;
```

dwDataSize Element ID Length Information (payload)


```
DWORD WINAPI WlanGetNetworkBssList(
    _In_ HANDLE hClientHandle,
    _In_ const GUID *pInterfaceGuid,
    const PDOT11_SSID pDot11Ssid,
    _In_ DOT11_BSS_TYPE dot11BssType,
    _In_ BOOL bSecurityEnabled,
    _Reserved_ PVOID pReserved,
    _Out_ PWLAN_BSS_LIST *ppWlanBssList );
```

- Retrieve available wireless networks list
- ppWlanBssList
 - Receive the returned list of of BSS entries

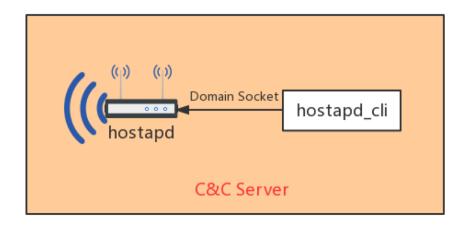
Windows Client: Receive

- WLAN_BSS_LIST
 - An array of WLAN_BSS_ENTRY structures that contains information about a network

Mac Client: Send

- CWInterface
 - func scanForNetworks(withSSID: Data?)

Mac Client: Receive



- CWInterface
 - func scanForNetworks(withSSID: Data?)
 - func cachedScanResults() -> Set<CWNetwork>?
- CWNetwork
 - informationElementData: Data?

C&C Server: Send And Receive

- Modified hostapd and hostapd_cli
- USB WiFi card

Demo

Ghost Tunnel

360PegasusTeam

Thanks!

Any questions?