Hacking Intelligent Building

Pwning KNX & ZigBee Networks

Tencent Blade Team

About US

HuiYu Wu (Nicky)

- Bug Hunter
- Winner of GeekPwn 2015
- Speaker of POC2017
- http://www.droidsec.cn

YuXiang Li (Xbalien)

- Major experience is in Mobile Security and found several vulnerabilities in Android.
- Former ROIS CTF team member
- Twitter : https://twitter.com/Xbalien29

About Tencent Blade Team

- A security research team from Tencent Security Platform Department
- Focus on security research of AI, IoT, Mobile
- Has found 70+ security vulnerabilities (Google, Apple, Adobe)
- Research output has been widely used in Tencent products

Part 1:

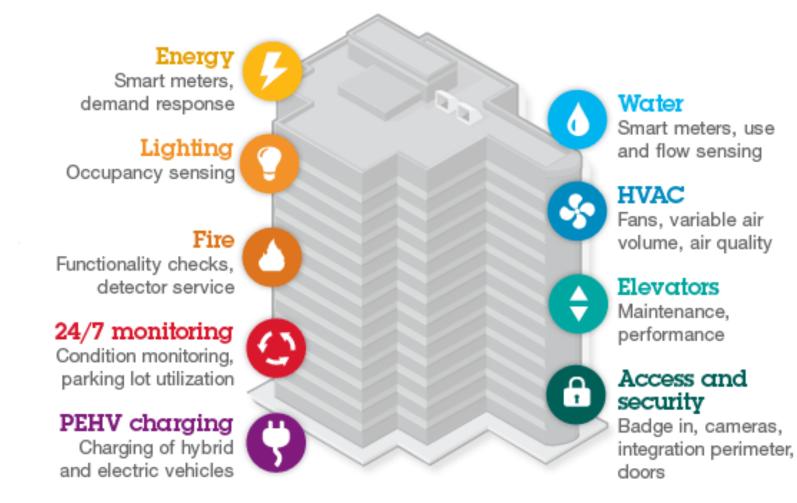
- Introduction to Intelligent Building
- Automatic Attack on ZigBee Network

Part 2:

- Practical Attack on KNX Network
- Security Advice

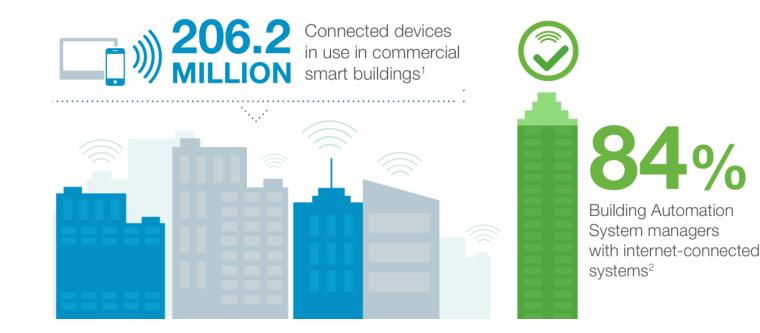
Introduction to Intelligent Building

• What is Intelligent Building


Why Intelligent Building

Building Automation and Home Automation

• A Demo of Remote Attack Intelligent Building


What is Intelligent Building

Why Intelligent building

- There are few researches on the security of intelligent buildings, we think its security problem will become more serious.
- We want to work with the security community to enhance the safety of Intelligent building.

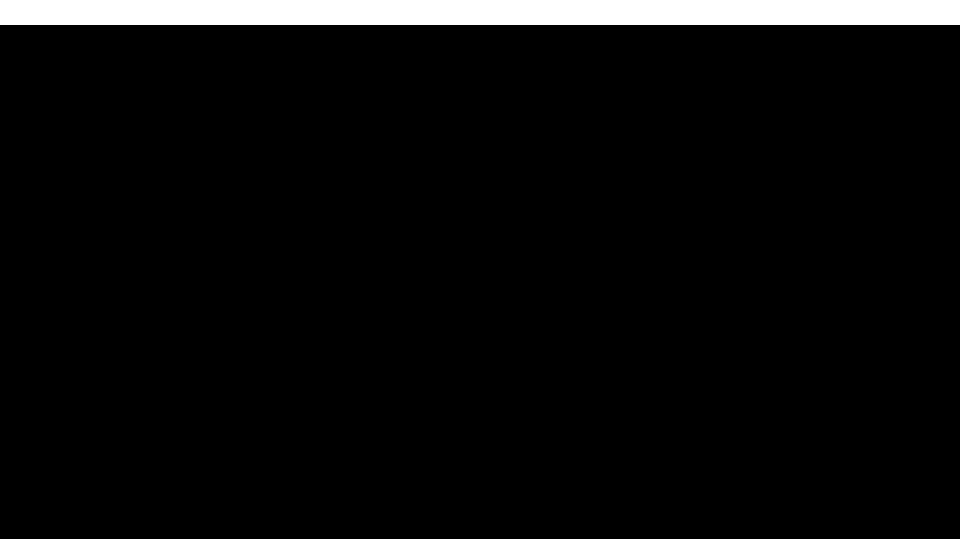
0

Building Automation & Home Automation

Home Automation

Building Automation

 \bigcirc


Building Automation & Home Automation

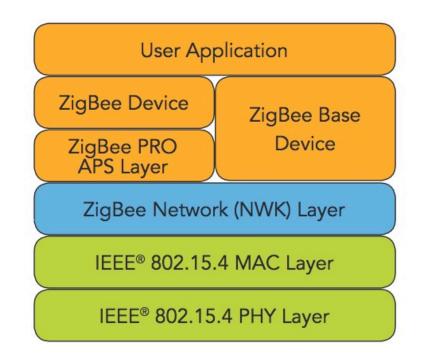
Building Automation
KNX°
<image/>

Let's set a small goal and make it possible

CAN WE REMOTE ATTACK INTELLIGENT BUILDINGS?

It's cool, isn't it?

Let me show you how we did it.


Automatic Attack on ZigBee Network

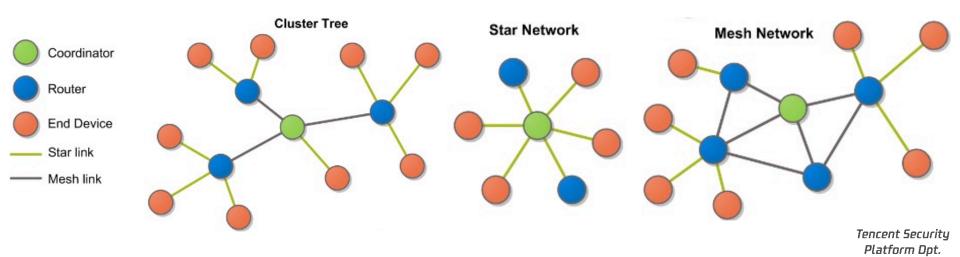
- What is ZigBee
- ZigBee Security Measure
- Current Risks on ZigBee
- Previous ZigBee Security testing tools
- Automated Attack ZigBee network
- ZomBee : A New ZigBee Pentest tools

What is ZigBee

- ZigBee is an open global standard for wireless technology designed to use low-power digital radio signals for personal area networks.
- ZigBee standard operates on the IEEE 802.15.4 physical radio specification and operates in unlicensed bands including 2.4 GHz, 900 MHz and 868 MHz.

What is ZigBee

Coordinator


Network establishment and Control

Router

Supports routing functionality, can talk to other routers ,coordinator, and end Devices

End Device

Can only talk to routers and the coordinator

ZigBee Security Measure

- ZigBee Security Features
- ZigBee Security Keys
- ZigBee Security Security Model
- Security During Commissioning

ZigBee Security Features

ZigBee security is based on symmetric-key cryptography

- Uses the highly secure 128-bit AES-based encryption.
- Keys reusing among layers of the same device.
- Same security level for all devices on a given network and all layers of a device.
- ZigBee command includes a frame counter to stop replay attack.
- Access control lists.

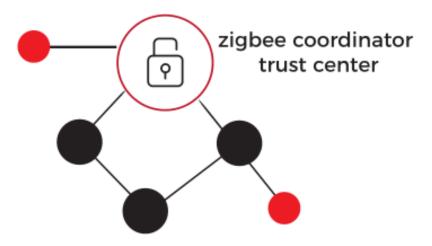
ZigBee Security Keys

• Link Key

This is uniquely shared between two devices and can be used to encrypt unicast messages between them. If a device shared a Link Key with the Trust Center it can be used to encrypt the transfer of the Network Key to a node joining the network.

Network Key

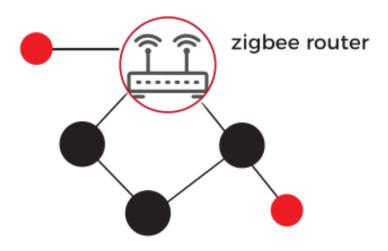
Shared between every device on the network and can be used for NWK layer encryption and protecting broadcast traffic. They can be pre-installed on devices or transported from the Trust Center.


Master Key

Used for SKKE Establishment of Link Keys. Usually pre-installed.

ZigBee Security Model

Centralized Security Model

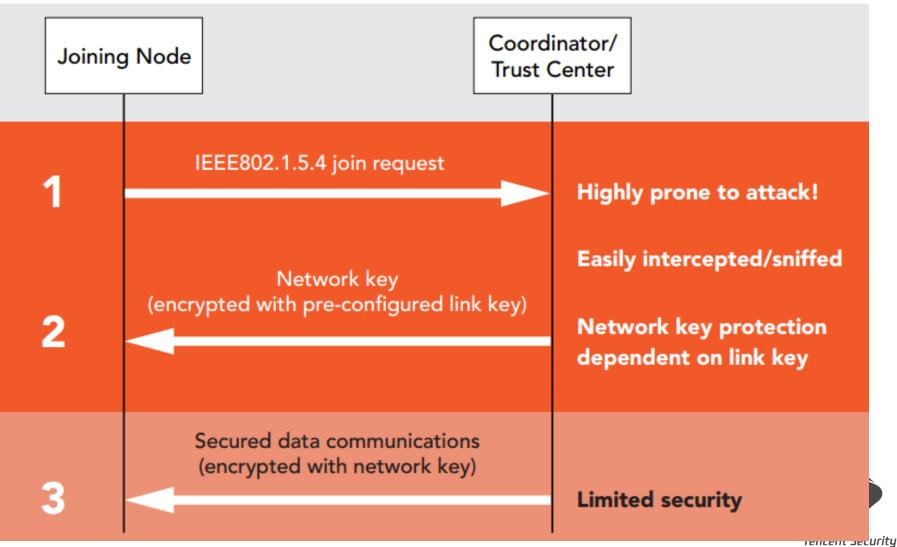


The TC establishes a unique TC Link Key for each device.

Node must support install codes (128 bits of random data + 16 bit CRC).

the Trust Center periodically creates, distributes, and then switches to a new network key.

Distributed Security Model


For easier-to-configure systems .

No Coordinator / Trust Center.

All devices must be pre-configured with a link key to encrypt the network key when a new node joining.

All the devices in the network encrypt messages with the same network key.

Security During Commissioning

Platform Dpt.

Security During Commissioning

Joining	a Node into joining node at factory	dinator/ Center Install code programmed into Trust Center by user. ZigBee stack derives link key.
1	IEEE802.1.5.4 join request	
2	Network key (encrypted with derived link key)	Network key protected by secret shared link key
3	Negotiation of unique link key issued by the Trust Center	No network or user data exchanged
4	Secured data communications (encrypted with unique link key)	Highly secure Resistant to attack!

Current Risks on ZigBee

- Use a well-known security key
 - (1) Default global link key: ZigBeeAlliance09
 - (2) Silicon Labs ZigBee chip default preconfigured Link key: Zigbee Security!
 - (3) Silicon Labs ZigBee chip default Network key: ember EM250 chip
- Insecure key transport over the air

(1) In some devices that use old ZigBee stack, it's easy to sniff the network key if transport key in clear text.

(2) A knowledge of the link key makes obtaining the network key possible by capturing over-the-air packets.

Current Risks on ZigBee

• Insecure key storage

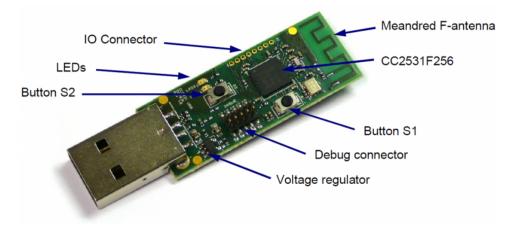
In the device's firmware or flash chip hard-coded key in plaintext

• Insecure rejoin and reuse the TC Link key

A node device can send a rejoin request to the network, and the network key will be transported again. And if the same link key is used for every join attempt, it opens up the system to rejoin security attacks.

• Replay protection bypass

If the network key is obtained, we can decrypt the NwkSeq number and frame counter from the packet so that it is automatically updated to the new value when the packet is injected.


Previous ZigBee Security Testing Tools

ZigBee Sniffer Tools

• Wireshark

https://wiki.wireshark.org/IEEE_802.15.4

- SmartRF Protocol Packet Sniffer http://www.ti.com/tool/PACKET-SNIFFER
- Ubiqua Protocol Analyzer https://www.ubilogix.com/ubiqua/

Previous ZigBee Security Testing Tools

• KillerBee

https://github.com/riverloopsec/killerbee

• SecBee

https://github.com/Cognosec/SecBee

Z3sec

https://github.com/IoTsec/Z3sec

Tencent Security Platform Dpt.

Atmel RZ RAVEN USB Stick

Automated Attack ZigBee network

If we want to quickly and automatically attack ZigBee devices in the city, we need to solve more problems:

- There are a lot of ZigBee devices in a building and it takes a lot of time to attack.
- The power of ZigBee transmitter is limited, which can't cover the whole floor at the same time.
- Multiple ZigBee networks are distributed in different rooms and channels, we can only specify one channel at a time to sniff and send packets.

Automated Attack ZigBee network

New improvements

• Support attack multi ZigBee network quickly

Increase the number of ZigBee sniffer and transmitter devices on raspberry pi to accelerate network scanning and attack speeds through multithreading.

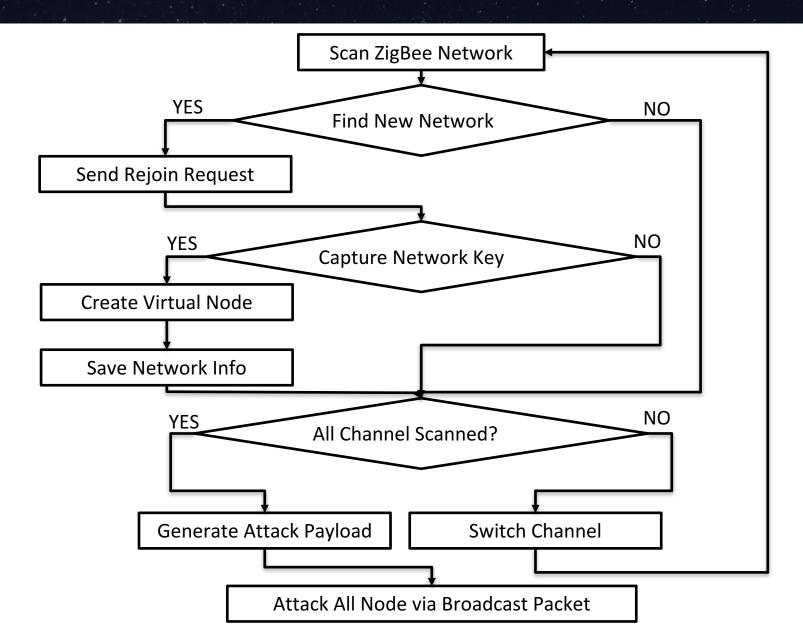
Automated Attack ZigBee network

New improvements

• Support batch attack

We create a virtual device in every network that collected, this virtual device will be set a random NwkAddr (0x0000 - - 0xfff7), and a IEEE/MAC address same as a device in the network, and its NwkSeq number and frame counter will start with 0.

In most of ZigBee devices we tested , if we use this virtual device to send a broadcast packets with correct PANID, it can be used to batch attack all node device in ZigBee network.


ZomBee: A New ZigBee Pentest tools

- A ZigBee Network Automated Security Testing tool.
- Based On Raspberry Pi 3B and Atmel RZ RAVEN USB Stick.
- 64-bit OS inside.
- Can be carried in a drone or any other space that can hold a small box.

ZomBee: A New ZigBee Pentest tools

ZomBee: A New ZigBee Pentest tools

	Sniff Packet	Network Scan	Replay Packet	Insecure Rejoin	Auto Update NwkSeq / Frame Counter	Command Inject	Capture NWK Key	Support Batch Attack
KillerBee			\checkmark					
SecBee	\checkmark			\checkmark			\checkmark	
Z3sec	\checkmark	~				V	V	
ZomBee	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark

Review

Part 1:

- Introduction to Intelligent Building
- Automatic Attack on ZigBee Network

Part 2:

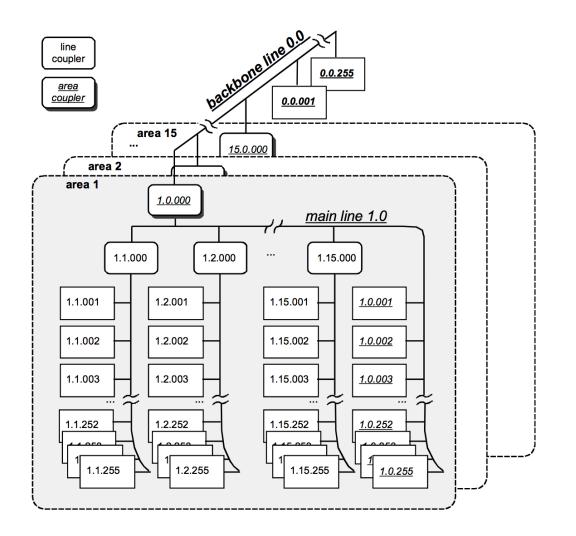
- Practical Attack on KNX Network
- Security Advice

Practical Attack on KNX Network

- Introduce KNX Network
- KNX Security Model
- Attack KNX Network

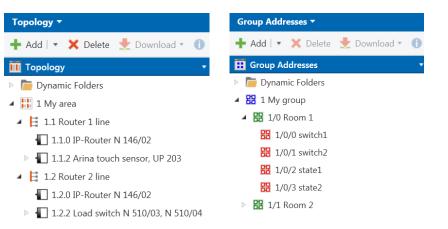
Why is KNX

- KNX is a widely used communication protocol for building automation
- KNX standard is administered by the KNX Association
- Less research on KNX security

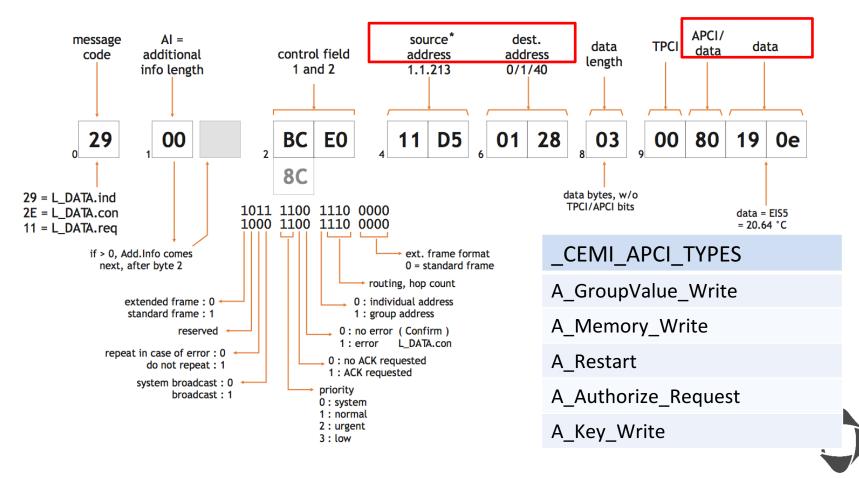

Basic Knowledge

- KNX devices categories
 - System devices and components
 - Terminal devices
- KNX communication media
 - Twisted Pair (TP)
 - IP (KNXnet/IP)
 - Power Line and Radio Frequency

Basic Knowledge


• The KNX topology

Basic Knowledge

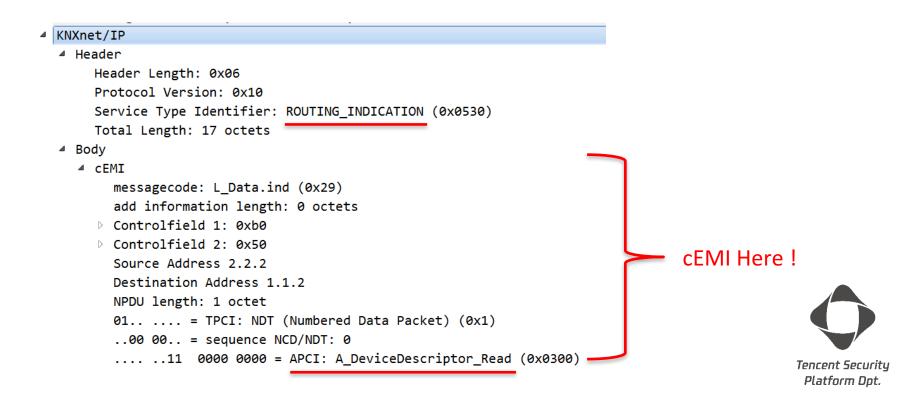

- Addressing between devices
 - Individual address
 - Group address
- ETS for KNX installation
 - Design topology architecture
 - Configure the device
 - Monitor bus or group telegram

Þ s	Start 📕 Stop 🥜 C	Clear 🛛 🚺	Open 🔡 Sa	ave	📄 Print 🛛 🗔 f	Replay Telegrams	Options	🔺 Group F	Functions				
Grou	up Address		Data point	type F	Raw (one byte o	r more) 🔻						Delay	y time[sec]
Lastı	received value		Value	0	000		use hex v	alues				Send	cyclically
#	Time	Service	Flags	Prio	Source Adv	d Source Name		Destination	Destination Name	Rou	1 Туре	DPT	Info
	2018-03-30 11:14:22 f	from bus		System	1.1.10	-		1/0/0	-	4	Write	1.* 1-bit	\$00
	2018-03-30 11:14:22 f	from bus		Low	1.2.2	17. 17.		1/0/2		4	Write	1.* 1-bit	\$00
	2018-03-30 11:14:29 f	from bus		System	1.1.10	5 1 -6		1/0/0	28	4	Write	1.* 1-bit	\$01
	2018-03-30 11:14:29 f	from bus		Low	1.2.2	÷		1/0/2	÷	4	Write	1.* 1-bit	\$01
	2018-03-30 11:14:37 f	from bus		System	1.1.10	-		1/0/3	9 7 0	4	Write	1.* 1-bit	\$01

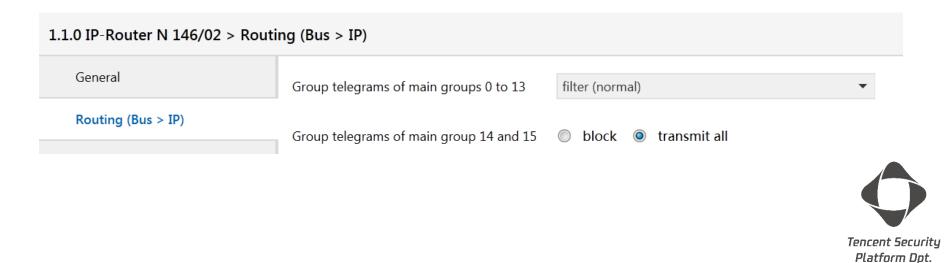
KNX Protocol


KNX cEMI

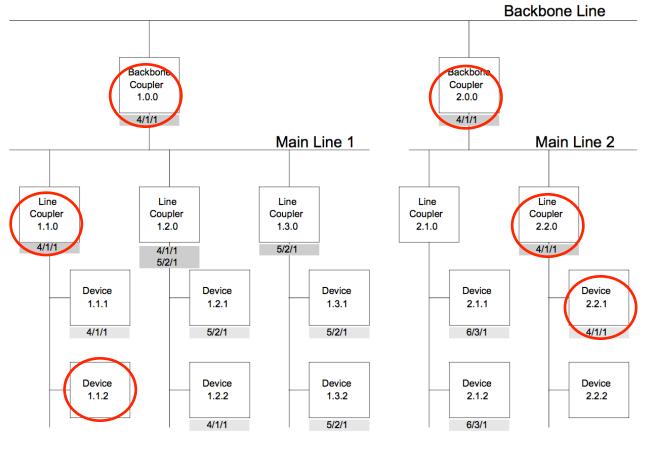
Tencent Security Platform Dpt.


KNX Protocol

- KNXnet/IP
 - Encapsulated cEMI via UDP
 - Default port is 3671


KNX Protocol

- KNXnet/IP
 - Encapsulated cEMI via UDP
 - Default port is 3671
 - Protocol Reverse Engineering via Wireshark


Routing mechanism

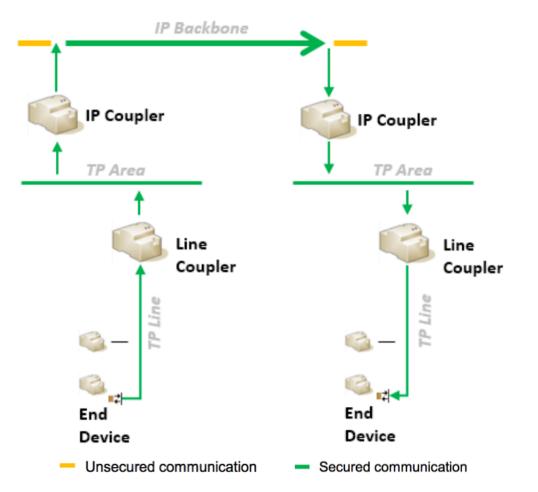
- KNXnet/IP Router vs Interface
 - IP Interface supports KNXnet/IP Tunnelling only
 - IP Router also supports KNXnet/IP Routing
- Group Address Filtering
 - All KNX Group Address telegrams received by a KNXnet/IP Router shall be subject to Group Address filtering

Routing mechanism

• Group Address Filtering

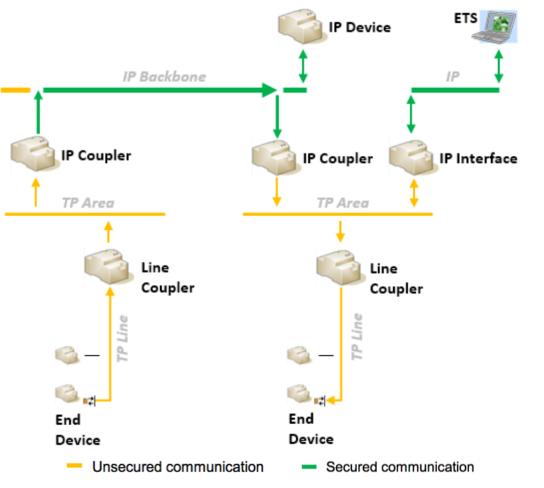
Tencent Security Platform Dpt.

1.1.2 send 4/1/1 2.2.1 recv 4/1/1


KNX Security Model

- KNX Secure
 - KNX data secure
 - KNX IP secure
- Current Situation
- Attack Surface
 - The weakness of KNX protocol
 - Weak security awareness during installation

KNX Secure

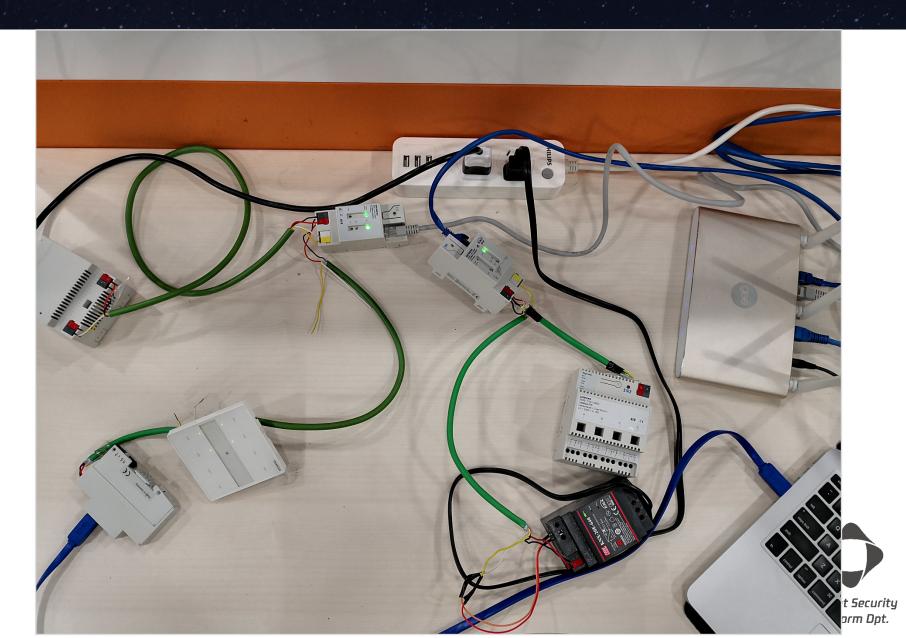

- KNX data secure
 - KNX Data Secure encrypts the APCI and the payload

KNX Secure

- KNX IP secure
 - KNX IP Secure encrypts the entire KNXnet/IP frame

Current Situation

- Attack surface still exists in most KNX networks
 - Some devices still do not support KNX secure.
 - Use earlier versions of ETS for installation
 - High renovation cost of existing buildings
- Attack surface of KNX
 - The weakness of KNX protocol
 - Weak security awareness during installation



Attack Surface

- The weakness of KNX protocol
 - Traffic is not encrypted and can be sniffed
 - Unable to prevent replay attacks
 - Device can be reprogrammed
- Weak security awareness during installation
 - No isolation in each room
 - No set authentication key
 - No encryption and lack of access control in LAN

Experimental Setup

Experimental Setup

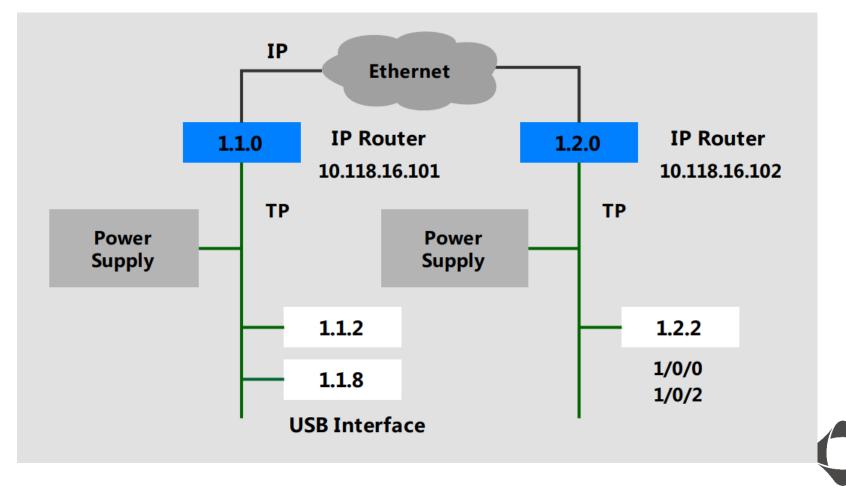
- KNX IP
 - IP-Router N146/02
- KNX USB
 - USB interface N148
- KNX Power
 - Power supply N125
- KNX Node
 - Load switch N 510
 - Arina touch sensor
- Router

Experimental Setup

- Tools for attack
 - ETS (https://www.knx.org/za/software/overview/index.php)
 - KNXmap (https://github.com/takeshixx/knxmap/)
 - Calimero (https://github.com/calimero-project)
 - Net'n Node (https://www.weinzierl.de/index.php)

- Step1: Enter the LAN where KNX is located
 - Cracking WiFi password / Weak password
 - Access switchs physically in the room

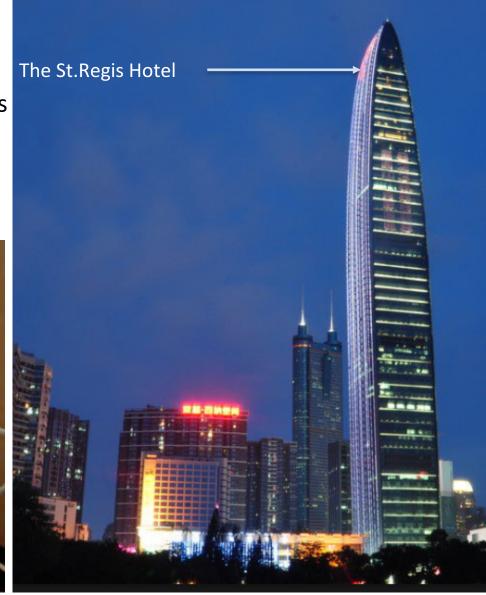
- Step2: Discover devices and build topology
 - Scan couplers and devices


C:\Users\lulu\knxmap-master>python Scanning 1 target(s)	main.py scan 10.	Scan L	ne	-03-30 L. L-Data.	ind 1.2.4	1.1.10	X	
		Individ	ual addre	sses to scan	Address			
10.118.16.101 Port: 3671		Area	Line 2 🖨	Device Start	 Dec Hex 			
MAC Address: 00:0E:8C:00:8A:F4 KNX Bus Address: 1.1.0 Additional Bus Addresses:			2	Device End	1 nex			
		А	ddr.	Mask Version		Serial	Number	
KNX Device Serial: 0001002043BE KNX Medium: KNX TP		1.2.2		0x0021 (TP BCU 2.1)	00	00 01 00 22 8D 45		
Manufacturer: Siemens								
Device Friendly Name: IP Router	N146							
Device Status:								
Programming Mode: ENABLED								
Link Layer: disabled		•		111			4	
Transport Layer: disabled Application Layer: disabled		State						
Serial Interface: disabled		Servic	e error					
User Application: disabled BC DM: 0		Star			10. 1	18. 16. 102	IP Router N146 🕤	
Project Install Identifier: O		-	-					
Supported Services:		 Discove 	ered Interfa	aces				
KNXnet/IP Core		🕎 Inte	(R) PRO/1000	MT Network Connection (224	.0.23.12) 224.0.1	23.12	00:0C:29:2E:95:25	
KNXnet/IP Device Management KNXnet/IP Tunnelling		4 1.2.0	IP Router N1	46 (10.118.16.102:3671)	10.118	8.16.102:3671	00:0E:8C:01:23:48	
KNXnet/IP Routing		4 1.1.0	IP Router N1	46 (10.118.16.101:3671)	10.118	8.16.101:3671	00:0E:8C:00:8A:F4	

- Step2: Discover devices and build topology
 - Scan couplers and devices
 - Monitor group telegram / Sniff LAN traffic
 - Guess the group address of the other rooms

Interface	t	Service	Src-Addr	Dest-Ad	ł٢	Control	Prio	H-C	TPCI	iequ	APCI	AL-Data
10.118.16.102 .	. 1	L-Data.ind	15.15.255	1/0/0		S	sys	6	υ		GrpValWrite	Data=0x01
10.118.16.102 .	. 1	L-Data.ind	15.15.255	1/0/0		S	sys	6	U		GrpValWrite	Data=0x00
10.118.16.102 .	. 1	L-Data.ind	1.2.2	1/0/2		S	10	6	U		GrpValWrite	Data=0x00
10.118.16.102 .	. ±	L-Data.req	PC	1/0/2		S !R	lo	6	U		GrpValRead	
10.118.16.102 .	. 1	L-Data.con	1.1.10	1/0/2		SR	lo	6	U		GrpValRead	
10.118.16.102 .	. 1	L-Data.ind	1.2.2	1/0/2		S	lo	6	U		GrpValResp	Data=0x00
10.118.16.102 .	. ±	L-Data.req	PC	1/0/0		S	10	6	U		GrpValWrite	Data=0x00
10.118.16.102 .	. 1	L-Data.con	1.1.10	1/0/0		S	lo	6	U		GrpValWrite	Data=0x00
10.118.16.102 .	. 1	L-Data.ind	15.15.255	1/0/0		S	sys	6	U		GrpValWrite	Data=0x01
10.118.16.102 .	. 1	L-Data.ind	1.2.2	1/0/2		S	lo	6	U		GrpValWrite	Data=0x01

• Step2: Discover devices and build topology


Tencent Security Platform Dpt.

- Step3: Send malicious data for attack
 - Traversing the IP of all couplers and send data
 - Send group telegram to control devices
 - Send APCI data to devices

DPT 01 - Bina	ry - 1 bit	s.com 1.1.10	X		
Group Address	-Datapoint ty	pe			
1 / 0 / 0 Dec Hex	DPT 01 - Bit	nary - 1 bit	•		
Priority	Hop Count	Repeat (for TP) -	AET (for RF)	C:\Users\lulu\knxmap-master>python main.py apci 10.118.16.102 1.2.2 Programming mode disabled	Progmode
Low	6 •	 Do not 	SerNo	C:\Users\lulu\knxmap-master>python main.py apci 10.118.16.102 1.2.2 memory-address 0x0060	Memory_Rea
Data value FALSE	/ 0 / Off / De	crease / Up / Open ,	/ Stop 🔹	b'2e' C:\Users\lulu\knxmap-master>python main.py apci 10.118.16.102 1.2.2	Restart
	, , , , , , , , , , , ,			C:\Users\lulu\knxmap-master>python main.py apci 10.118.16.102 1.2.2 memory-address 0x0060memory-data af	Memory_Wri
-Request Telegr	ram				
11 00 BC E0 00	0 00 08 00 01	00 80			
Send		10. 118. 16. 102 1	P Router N146 🕤		ncent Security Platform Dpt.

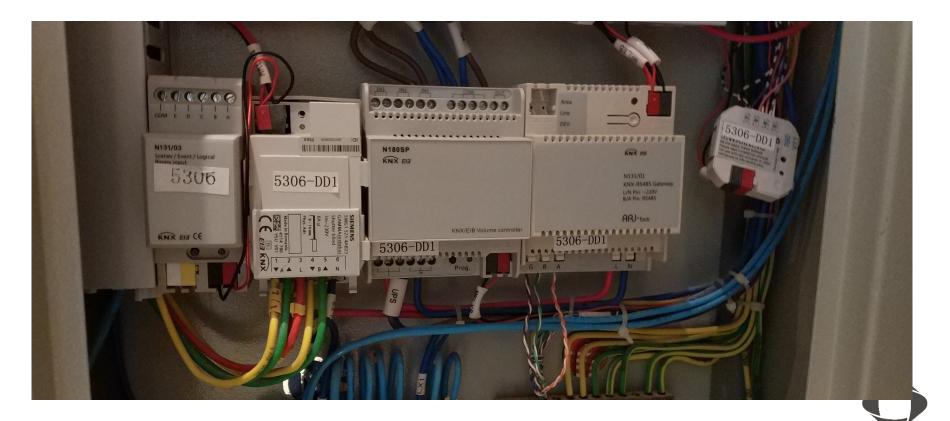
In DefCon 22, a security researcher showed how to hack the lighting control system in the St.Regis Hotel via the hotel's WIFI network.

If Ethernet is isolated ?

Maybe.. Attack KNX network via KNX TP. Real-world attack?

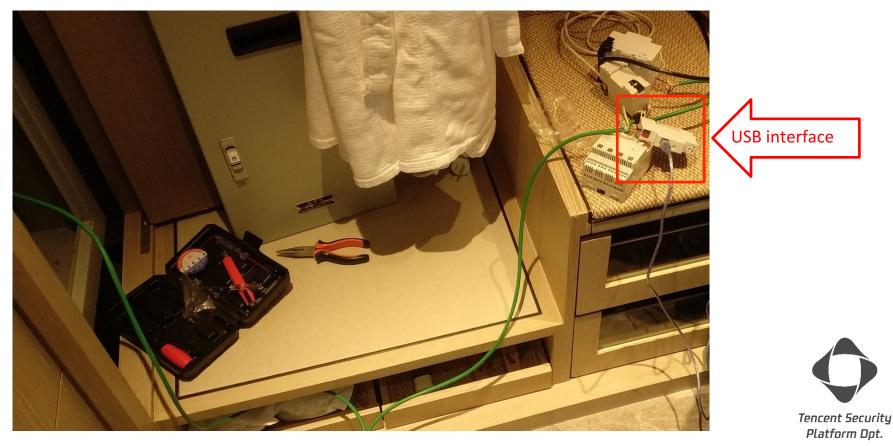
Marriott Hotel

- 340 rooms
- 300 meters
- Ocean view



You can use KNX smart panel control in your room, including features such as :

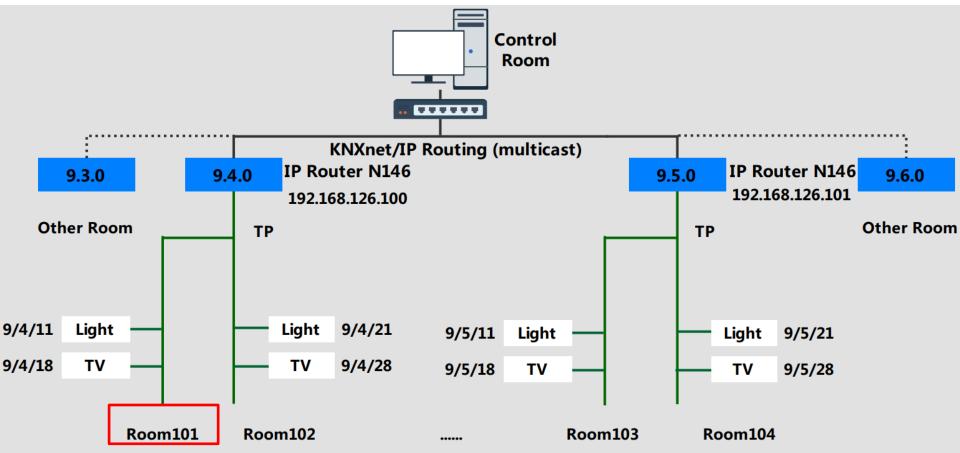
- Light switch with brightness
- Air conditioning temperature
- TV switch
- Music switch
- Curtain switch
- But, Ethernet is isolated



- Step1: Enter the BUS where KNX is located
 - Look for KNX devices in the room

Tencent Security Platform Dpt.

- Step1: Enter the Bus where KNX is located
 - Look for KNX devices in the room
 - Access KNX network via TP and USB Interface


• Step2: Discover devices and build topology

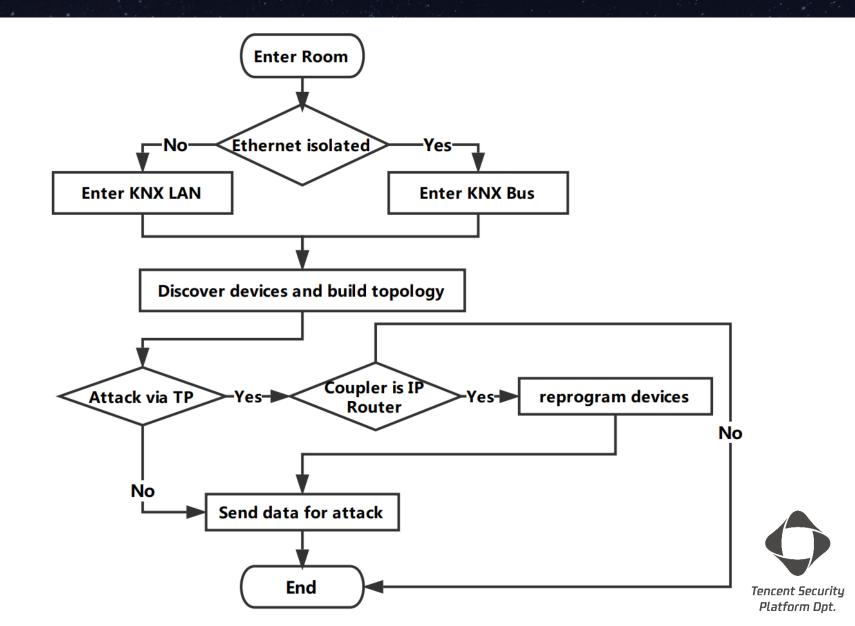
- Monitor group telegram or bus data
- Scan the device on Line
- Get the coupler's detail

Name	Value
KNXnet/IP server	9.4.0
name	IP Router N146
Supported IP assignment methods	manual, DHCP, Auto IP
Enabled IP assignment methods	manual
Current IP assignment method	manual
Routing capabilities	queue overflow statistics, transmitted telegrams statistics,
Configured IP address	192.168.126.100
Configured subnet mask	255.255.255.0
Current IP address	192.168.126.100
Current subnet mask	255.255.255.0
Configured default gateway	192.168.126.254
Current default gateway	192.168.126.254
DHCP/BootP server	0.0.0.0
Routing multicast	224.0.23.12

- Step2: Discover devices and build topology
 - IP Router as coupler and share with two rooms
 - Guess the group address in the other rooms

- Step3: Modify group filter tables
 - Brute-force cracking authentication key (the default is 0xFFFFFFF)

- Send APCI data to enable program mode
- Use ETS to configure group filter tables on each Line -


Properties	4 🖩 9 main group
Settings Comments Information	⁴ ¹²⁸ 5 middle group ¹²⁹ 9/5/21 - 9/5/28
Number of devices 2	₩ 9/5/31 - 9/5/38
Bus Current 15 mA	
Manual Filter Table Entries	
9/5/21	
9/5/22	
9/5/23	
9/5/24	
9/5/25	
9/5/26	
9/5/27	
9/5/28	
9/5/31	
9/5/32	
9/5/33	
9/5/34	

- Step4: Send malicious data for attack
 - Traversing all devices and send data
 - Send group telegram to control devices on the other line
 - Send APCI data to devices

Attack KNX Network

Security Advice

- ZigBee Security Advice
- KNX Security Advice

ZigBee Security Advice

- Update network keys regularly.
- Don't use any well-known security key.
- Implement custom secure encryption in the application layer (If do not need to be compatible with other devices).

KNX Security Advice

- Don't expose KNX gateways on public networks.
- Make sure each room is isolated .

- Ensure network security including WiFi and switches.
- Use new devices and the latest version of ETS to implement KNX secure.

Thank You

blade@tencent.com

Reference

KNX Basics <u>http://www.knx.org/media/docs/Flyers/KNX-Basics/KNX-Basics_en.pdf</u>

EMI FT12 Message Format <u>http://www.dehof.de/eib/pdfs/EMI-FT12-Message-Format.pdf</u>

Using KNX Secure in ETS5 <u>http://www.knx.it/download/DOCUMENTAZIONE_KNX/07_M.Vettorato_-_KNX_Secure_-</u> <u>Use_in_ETS5.pdf</u>

KNX Secure Position Paper_en.pdf https://www.knx.org/knx-en/Landing-Pages/KNX-Secure/Useful-Material/KNX-Secure-Position-Paper_en.pdf

A Practical Attack Against a KNX-based Building Automation System https://ewic.bcs.org/upload/pdf/ewic_icscsr14_paper7.pdf

DEFCON-22-Jesus-Molina-Learn-how-to-control-every-room.pdf <u>https://www.defcon.org/images/defcon-22/dc-22-presentations/Molina/DEFCON-22-Jesus-</u> <u>Molina-Learn-how-to-control-every-room.pdf</u> Security in KNX or how to steal a skyscraper <u>http://2015.zeronights.org/assets/files/20-Litvinov.pdf</u>

Building management systems for providing security in existing KNX projects: Organizational measures and device monitoring https://www.netxautomation.com/netx/images/downloads/Pr%C3%A4sentationen/EN/KN https://www.netxautomation.com/netx/images/downloads/Pr%C3%A4sentationen/EN/KN https://www.netxautomation.com/netx/images/downloads/Pr%C3%A4sentationen/EN/KN https://www.netxautomation.com/netx/images/downloads/Pr%C3%A4sentationen/EN/KN https://www.netxautomation.com/netx/images/downloads/Pr%C3%A4sentationen/EN/KN https://www.netxautomation.com/netx/images/downloads/Pr%C3%A4sentationen/EN/KN

How to Solve It: Manually Adding Group Addresses to the Filter Table <u>http://knxtoday.com/2015/01/5286/how-to-solve-it-manually-adding-group-addresses-to-the-filter-table.html</u>

Security Analysis of Zigbee <u>https://courses.csail.mit.edu/6.857/2017/project/17.pdf</u>

zigbee: Securing the Wireless IoT http://www.zigbee.org/download/new-white-paper-zigbee-securing-the-wireless-iot/

MAXIMIZING SECURITY IN ZigBee NETWORKS <u>https://www.nxp.com/docs/en/supporting-information/MAXSECZBNETART.pdf</u>

ZIGBEE EXPLOITED - The good, the bad and the ugly

https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly.pdf

What's New in ZigBee 3.0

http://processors.wiki.ti.com/index.php/What's_New_in_ZigBee_3.0

Insecure to the Touch: A acking ZigBee 3.0 via Touchlink Commissioning <u>https://www1.cs.fau.de/filepool/publications/wisec2017_touchlink.pdf</u>