
Smart
Contract
(in)security

2017 @ Swarm Technologies, Inc.

polyswarm.io

info@polyswarm.io

https://polyswarm.io
mailto:info@polyswarm.io

This talk covers:

1. Ethereum smart contract vulnerabilities that

enable misallocation of funds ...

2. in real contracts ...

3. that have really been exploited in the wild.

This talk doesn’t cover:

1. Serpent or Viper contracts (future work!)

2. compiler bugs

3. vulns / exploits involving compromise of

exchanges, platforms, or anything that isn’t a

contract

DELEGATECALL into Vulnerable Lib

1/7

oops … ?

DELEGATECALL into Vulnerable Lib

2/7

… maybe not

3/7

DELEGATECALL into Vulnerable Lib

4/7

Parity MultiSig fallback function

DELEGATECALL into Vulnerable Lib

5/7

DELEGATECALL into Vulnerable Lib

6/7execution context & you

DELEGATECALL into Vulnerable Lib

● Example: Parity MultiSig Wallet July 20th 2017 - Nov 7th
2017. Somewhere between 160 and 300M USD frozen. No fork
(so far).

● Vuln: All Parity wallets would DELEGATECALL into a single
library contract address. This library itself could be
(and hadn’t been) initialized. devops199 initialized it,
became owner, and used ownership to suicide the library
contract. All Parity MultiSig wallets relying on this
contract no longer functioned.

7/7

DELEGATECALL into Vulnerable Lib

https://github.com/paritytech/parity/commit/b640df8fbb964da7538eef268dffc125b081a82f#diff-8ea4aa7c2ba715c683bc764337f51585

Unhandled Reentrant Control Flow

● Example: The DAO. Attacker stole ~$50-60M USD, then Ethereum
hard-forked and community split, resulting in Ethereum Classic.

● Vuln: .call.value()() will forward remaining gas to callee
(attacker-authored contract). The attacker’s contract then calls
back into the vulnerable contract, potentially violating
developer expectations. .send() and .transfer() only forward
2300 gas, which cannot be used to re-enter vuln contract.

● Exploit: Author a contract whose fallback function calls back
into the caller in a manner that violates expectations.

1/3

https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://ethereumclassic.github.io/
https://github.com/slockit/DAO/blob/v1.0/DAO.sol#L251

Unhandled Reentrant Control Flow

2/3vulnerable snippet from the DAO

Unhandled Reentrant Control Flow

3/3example vulnerable contract example exploit contract

example & exploit stolen from: https://github.com/trailofbits/not-so-smart-contracts

https://github.com/trailofbits/not-so-smart-contracts

Unprotected Critical Function
High Level

● Example: Parity MultiSig Wallet v1.5-1.7. Black hats stole
~30M. Could have stolen ~200M. White hats stole rest.
Alleged black hat wrote a blog post about bad Tinder date.
No fork.

● Vuln: WalletLibrary::initWallet() initializes the wallet
owner addresses. It had no visibility decorator, so it was
public. But WalletLibrary != Wallet, so it shouldn’t have
been called with Wallet context. Unfortunately,
Wallet::<fallback> did a catch-all DELEGATECALL into
WalletLibrary. Oops.

1/4

https://medium.com/@rtaylor30/how-i-snatched-your-153-037-eth-after-a-bad-tinder-date-d1d84422a50b
https://github.com/paritytech/parity/commit/b640df8fbb964da7538eef268dffc125b081a82f#diff-8ea4aa7c2ba715c683bc764337f51585

Unprotected Critical Function
Critical Code

Despite the comment, WalletLibrary::initWallet() is not a
constructor. It has no visibility decorator, so it’s public.

2/4

Wallet::<fallback> does a catch-all DELEGATECALL into
_walletLibrary, which points to on-chain WalletLibrary

Unprotected Critical Function
Nitty-Gritty

3/4

● enhanced-wallet.sol defines two contracts: Wallet and WalletLibrary. WalletLibrary is
deployed once for all Parity Wallets. This minimizes deployment storage & gas cost.

● Wallet::Wallet() (Wallet’s constructor) initializes the Wallet’s owners via a
DELEGATECALL to WalletLibrary::initWallet().

● Wallet::<fallback>(), when called without Ether (msg.value) but with message data
(msg.data), will DELEGATECALL the msg.data to WalletLibrary.

● WalletLibrary::initWallet() has no visibility decorator. Solidity defaults to public.
Anyone can call this function.

● DELEGATECALL will cause execution of a foreign function on local state.
● Wallet’s local state includes its m_owners array - addresses allowed to transfer funds.
● The attacker calls Wallet::initWallet().
● This function doesn’t exist; Wallet::<fallback>() is executed.
● Wallet::<fallback>() DELEGATECALLs to WalletLibrary::initWallet() with the attacker’s

parameters.
● WalletLibrary::initWallet() acts on the local state of Wallet and installs the attacker

as sole member of m_owners.
● Attacker drains contract via Wallet::execute().

https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L395
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L64
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L399
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L417
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L216
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol#L460
https://etherscan.io/tx/0x9dbf0326a03a2a3719c27be4fa69aacc9857fd231a8d9dcaede4bb083def75ec
https://etherscan.io/tx/0x0e0d16475d2ac6a4802437a35a21776e5c9b681a77fef1693b0badbb6afdb083

Unprotected Critical Function
Exploit

4/4

step 1: attacker makes themselves the owner

step 2: drain all funds via execute()

Unprotected Critical Function
Part Deux: Copypasta Strikes Back
● Example: Rubixi1,2: Unabashedly a pyramid scheme *cough* “Ethereum

doubler”.

● Vuln: Someone copied DynamicPyramid and called it Rubixi. They
neglected to change the name of the constructor. By default,
functions are public (anyone can call). Since constructor name !=
contract name, the constructor was callable. The constructor
permitted the caller to reassign contract ownership. Game Over.

● Exploit: Call DynamicPyramid(), reassign contract owner to
msg.sender, drain contract.

1/2

https://bitcointalk.org/index.php?topic=1400536.0
https://etherscan.io/address/0xe82719202e5965Cf5D9B6673B7503a3b92DE20be#code

● Vuln:
1. “Rubixi”(line 1) !=

“DynamicPyramid” (line 8)

● Exploit:
1. call DynamicPyramid()
2. you’re now the creator
3. call collectAllFees()
4. profit

2/2

Unprotected Critical Function
Part Deux: Copypasta Strikes Back

Unchecked .send()

● Example: King of the Ether Throne (KoET)1,2. A “game” wherein
people pay a bounty to dethrone a reigning monarch. The outgoing
monarch is compensated 1% of dethrone fee. Rinse, repeat.

● Vuln: If contract state is changed after a .send() call and the
send fails, bad things may happen. In the case of KoET, if a
monarch address is a contract, it is liable to exhaust gas during
.send() and therefore never receive the dethrone fee (example).

KoET is a shooting-self-in-foot example, but improperly handling
.send() failure can be more serious.

1/2

https://www.kingoftheether.com/postmortem.html
https://etherscan.io/address/0xb336a86e2feb1e87a328fcb7dd4d04de3df254d0
https://live.ether.camp/transaction/6d41b1d3e9b01efc0cc63b5c7ee162bccffe5af00fba3940850b09bfcbee0c9e

Unchecked .send()

● .send() unchecked (line
15), but current monarch
is updated regardless

● outgoing monarch misses
out on fee

● .send() should always be
checked for failure

2/2

.send() w/ Throw

● .send() without checking for failure is bad

● .send() wrapped in a throw* is sometimes worse -- “griefing”

synthetic example from vessenes.com

* or require() / assert() for that matter

http://vessenes.com/ethereum-griefing-wallets-send-w-throw-considered-harmful/

Secret Data Stored On-Chain

● Example: Rock Paper Scissors. A game where
people bet 1 Ether on a game of rock paper
scissors. The house takes 1% when there is no
tie.

● Vuln: Players’ moves are revealed before the
end of the commit window.

● Exploit: Watch the blockchain for your
opponent’s move, then play the winning move.

http://howtobuyether.org/rps/
https://etherscan.io/address/0xAc504e2a9c870A48de521ed513B251B1f7116Dd9#code
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626

Secret Data Stored On-Chain

● Example: Rock Paper Scissors. A game where
people bet 1 Ether on a game of rock paper
scissors. The house takes 1% when there is no
tie.

● Vuln: Players’ moves are revealed before the
end of the commit window.

● Exploit: Watch the blockchain for your
opponent’s move, then play the winning move.

https://etherscan.io/address/0xAc504e2a9c870A48de521ed513B251B1f7116Dd9#code
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://www.reddit.com/r/ethtrader/comments/4fpn6o/play_rockpaperscissors_for_1_eth_via_mist_wallet/d2b8zax/?context=10
https://www.reddit.com/r/ethtrader/comments/4fpn6o/play_rockpaperscissors_for_1_eth_via_mist_wallet/d2b8zax/?context=10
http://howtobuyether.org/rps/
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626

Secret Data Stored On-Chain

● Example: Rock Paper Scissors. A game where
people bet 1 Ether on a game of rock paper
scissors. The house takes 1% when there is no
tie.

● Vuln: Players’ moves are revealed before the
end of the commit window.

● Exploit: Watch the blockchain for your
opponent’s move, then play the winning move.

https://etherscan.io/address/0xAc504e2a9c870A48de521ed513B251B1f7116Dd9#code
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://www.reddit.com/r/ethtrader/comments/4fpn6o/play_rockpaperscissors_for_1_eth_via_mist_wallet/d2b8zax/?context=10
https://www.reddit.com/r/ethtrader/comments/4fpn6o/play_rockpaperscissors_for_1_eth_via_mist_wallet/d2b8zax/?context=10
http://howtobuyether.org/rps/
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0xcf543d0f45f7d566ce78d6580095cc0268c3c7a92aae985fed70e95a2e8c4626
https://etherscan.io/tx/0x63978f415d06a5760d46214630e2ad42fa1db8545dceae3d2f8c7eed267baef5
https://etherscan.io/tx/0x63978f415d06a5760d46214630e2ad42fa1db8545dceae3d2f8c7eed267baef5

More Vulns!

● computable PRNG seeds
○ Roulette

● integer overflows
○ bug in best practices
○ synthetic example

● race condition
○ intra-transactional
○ inter-transactional

■ ERC20 was vulnerable during development
■ synthetic example

http://martin.swende.se/blog/Breaking_the_house.html
https://github.com/ethereum/solidity/issues/796#issuecomment-253578925
https://github.com/maraoz/solidity-experiments/pull/1
https://github.com/trailofbits/not-so-smart-contracts/tree/master/integer_overflow
https://github.com/ConsenSys/smart-contract-best-practices#cross-function-race-conditions
https://github.com/ConsenSys/smart-contract-best-practices#transaction-ordering-dependence-tod--front-running
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/trailofbits/not-so-smart-contracts/tree/master/race_condition

Contract Auditing / Security Tools
...that seem to be maintained

● Mythril (multi-use RE, VR, graphing tool)
● Porosity (EVM decompiler)
● 4byte.directory (reverse function name lookup, used by other tools)
● Solium: Solidity linter
● solcheck: Solidity linter
● Oyente: static analysis w/ Z3 theorem prover
● solidity-coverage: measures code coverage

Tell us about tools we missed at info@polyswarm.io!

https://github.com/b-mueller/mythril
https://github.com/comaeio/porosity
https://www.4byte.directory/
https://github.com/duaraghav8/Solium
https://github.com/federicobond/solcheck
https://github.com/melonproject/oyente
https://github.com/sc-forks/solidity-coverage
mailto:info@polyswarm.io

How PolySwarm
is handling
security

PolySwarm / Nectar
bug bounty.
We’re Information Security people, so we know
bugs happen.

More importantly, we know that we’re not
above making them.

During Alpha and Beta development, we’ll
offer a bug bounty program to the world.

Details are being decided now, stay tuned!

PolySwarm / Nectar
audit.
Bug bounties are great, but they’re no
substitute for a professional audit.

We’ve enlisted the help of Trail of Bits - a
high-end information security company on the
forefront of Ethereum / EVM audits with an
impressive array of internal auditing tools.

PolySwarm is happy to be the first public
example of Trail of Bits’ prowess in this
space.

https://www.trailofbits.com/

Today’s threat
protection
economy is
broken.

Today’s market:

1. mandates duplication of effort.
All AV must detect WannaCry. This
is duplication of effort and cost.

2. disincentivizes specialized
offerings.
Lowest common denominator wins:
invest in ubiquitous threats.

3. discourages interoperability. You
can’t run both McAfee and Symantec
if you wanted to. And you don’t
want to.

Perverse incentives abound.

left circle: AV 1 coverage
right circle: AV 2 coverage
black: blind spot

Figure A (Old)

you went with AV 1
black is still your blind spot

Figure B (Old)

Figure C (PolySwarm)

PolySwarm encourages full,
combinatorial coverage

Fragmented market. Fragmented coverage.
(Antivirus, $8.5B)

Incentives for up-to-date

threat protection are

fragmented across the market.

Every provider duplicates

some amount of coverage.

Majority of subscription

revenue goes to overhead, not

user protection.

PolySwarm fixes the economics.

PolySwarm decentralizes and tokenizes malware threat

intelligence.

PolySwarm automatically rewards security experts for

timely judgements on the malintent of things

submitted by Enterprises & End Users.

PolySwarm
rewards
accuracy.

Threat protection redefined

Enterprises

● Have: money, streams of
maybe-malicious artifacts (files,
URLs, traffic)

● Want: timely protection for their users
from broad, up-to-date, experts

● PolySwarm provides: single submission
and payment point for multiple threat
protection points of view.

Bounties

Offers

Experts

● Have: vast expertise in finding
badness in files, urls, and network
traffic (artifacts)

● Have: up to date intel on their
slice of the malware underground

● Want: passive tokenized income from
encapsulating knowledge into
“micro-engine” that lives in
PolySwarm

Bounties

Offers

Ambassadors

● Have: Enterprise customers and
accuracy data for PolySwarm’s
security experts.

● Want: income from curated offerings
to Enterprises.

● PolySwarm provides: curated
offerings in a simple subscription
model to Enterprises. Market maker
for experts.

Bounties

Offers

Volume
sustains
the Swarm.

VirusTotal subscriptions
are ~$160K/mo

VirusTotal scans 10M+ samples/day

Estimated about 0.015/USD per sample

The
PolySwarm
plan

Token Sale
Driven
Development
Swarm Technologies, Inc. builds PolySwarm

and engages with the community to create

demand on both sides.

We connect initial participants via public

competitions, meetups, hackathons and dev

grants.

Our token sale starts February 20th on the

Ethereum blockchain.

15% of total tokens airdropped to experts.

$24M
to date

Bootstrapping a
New Market

After the token sale, we focus on

market development and security

expert onboarding via:

● open tooling

● blockchain-based reputational
transparency

● passive income opportunities
that ensure the network grows
quickly

1000+
experts on
platform

Transactions &
Future Revenue
● PolySwarm tokenizes fees and

revenue; Swarm Technologies,
Inc. takes tokenized fees for
bounty arbitration from day 1.

● Open tooling doesn’t mean free
support. Our open endpoint agent
support becomes a source of
enterprise revenue.

● Appliance integrations: Cisco /
Juniper / Palo Alto sit at the
edge, lack broad and constant
intelligence feeds

fees
mrr: minute

recurring revenue

$45
avg/yr cost of

endpoint
protection agent

18%
CAGR for

Threat Intel*

* https://goo.gl/EbRzSn

PolySwarm has industry support.

PolySwarm is fortunate to be advised by

world-renowned information security experts hailing

from both industry and academia.

DR. SERGEY BRATUS
RESEARCH ASSOCIATE PROFESSOR,
DARTMOUTH COLLEGE

CARL HOFFMAN
FOUNDER & CEO,
BASIS TECHNOLOGY

CHRIS EAGLE
AUTHOR, IDA PRO BOOK SENIOR
LECTURER, NAVAL POSTGRADUATE SCHOOL

DAN GUIDO
CO-FOUNDER & CEO,
TRAIL OF BITS

STEVE BASSI
CEO, DEVELOPER, FOUNDER

PAUL MAKOWSKI
CTO, DEVELOPER, CO-FOUNDER

NICK DAVIS
COO, DEVELOPER, CO-FOUNDER

MAX KOO
SENIOR BACKEND DEVELOPER, CO-FOUNDER

BEN SCHMIDT
DIRECTOR OF PRODUCT SECURITY,
DEVELOPER, CO-FOUNDER

Thanks!

Got pointers to other vulns / exploits / tools that would

fit in this talk? Let us know! info@polyswarm.io

Help us help others!

2017 @ Swarm Technologies, Inc.

polyswarm.io

info@polyswarm.io

mailto:info@polyswarm.io
https://polyswarm.io
mailto:info@polyswarm.io

Links / Credits

● https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
● https://github.com/ConsenSys/smart-contract-best-practices
● Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. "A Survey of Attacks on

Ethereum Smart Contracts (SoK)." International Conference on Principles of
Security and Trust. Springer, Berlin, Heidelberg, 2017.

● http://u.solidity.cc/
● https://github.com/trailofbits/not-so-smart-contracts

More links in slide comments :)

https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://github.com/ConsenSys/smart-contract-best-practices
http://u.solidity.cc/
https://github.com/trailofbits/not-so-smart-contracts

