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Abstract 

 Recently, malicious mining using CPUs has become a trend – mining where the task is not 

detected by the user is even more of a threat. In this paper, we focused on discovering IA-32 

vulnerabilities over the last couple of months and found an undetectable task using hardware task 

switching method. It is possibly undetectable to the operating system and thus hidden from system 

user. Although hardware task switching methods are replaced by more convenient software switching 

methods in the recent years, they still exist on modern computer systems. By manually manipulating 

hardware task switching, which are directly managed by the CPU, we show that it is possible to create a 

hidden scheduler aside from the ones created by the operating system. We demonstrate using a simple 

CPU consumption example that these hidden tasks have potential to evolve into more sophisticated 

malicious attacks that can go unnoticed by users.  

The important point of this research was that you can conceal these attacks from the user. 

Proof of the concealment will be shown with figures and tables. We also show that it is difficult to 

defend against hardware switching attacks because there are currently no tools that detect when Global 

Descriptor Table has been modified. 
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1 Introduction 

 Recently, cryptocurrencies have become a center of attention, and malicious mining cases are 

being newly discovered. Also, mining can be even a bigger threat in terms of CPU usage if not detected 

by the user.  

In this paper, we propose a new method to create a task using hardware task switching which 

does not be traced by operating system (OS) from the user. This can be hidden from the user 

perspective view because the current method to switch tasks is software task switching under OS 

boundary. Currently, software task switching method is mostly used for convenience and faster 

performance than the hardware task switching method which uses the CPU directly. However, we use 

hardware task switching method. This means that task management won't be able to display the task 

from hardware task switching method because it is executing outside of the OS. In other words, we can 

execute another task besides from the OS scheduler and use a different scheduler which the CPU usage 

is undetectable in the OS. Proposed research method could be potential attacks. In normal user 

perspective, if the users feel the PC slow, they think the problem as overuse of CPU or virus and rootkits. 

The way for the normal user to check the CPU usage is through task management and a way to detect 

virus is to use a generally used anti-virus tools. However, since the way we suggest is not existing way of 

attacking yet, it won't be able to be detected through the tools. 

Following steps are the way to manually operate hardware task switching. First, we implement 

newly made driver to a computer. Then, we modify values of GDT [6], TSS [6] using the driver that has 

the ring 0 authority – which is the highest authority of privileged level of computer. Last, it starts to keep 

on switching tasks between normal task and a malicious task. In the following sections, we present the 

way how hardware task switching works and show how it can work secretly.  

Proposed method is fundamentally different from the existing rootkit. Prior to this research, 

trials to use task switching method for rootkits were none. Existing rootkits tried to handle just the 
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address or the link state of the processes [4]. In addition, fundamental approach of manually using the 

vulnerability of OS using the hardware task switching can suggest dangers and further research to 

prevent it.  

The paper is outlined as follows. In section 2, we present the proposed method in relation to 

existing works. In section 3, we present our proposed method and show that a task can be hidden from 

the OS. In section 4, we discuss about the result of the proposed method and in section 5, we show 

advantages, limitations and further research this proposed method can have. At last, we conclude the 

paper. 

2 Background 

2.1 Task Switching Methods  

Global Descriptor Table (GDT) is a structure from Intel processors which mostly shows the 

memory area used during execution of a task. The memory area is also called as a ‘descriptor’. One of 

the descriptors that GDT contains is ‘Task State Segment (TSS) descriptor’ which tells about the base 

address of the TSS structure. Hardware task switching method uses this special structure called Task 

State Segment (TSS). To be specific, this structure consists of data segments that contains the state of 

the CPU from each task. For each time of task switching, CPU uses the corresponding TSS’s information 

of the task to switch back. CALL or JMP instructions are most used during the task switching. 

Figure 1 gives an intuition of hardware task switching. To explain, address ‘0x28’ is the base 

address of TSS descriptor and it usually is set to first address of a TSS. In addition, it is mostly indicated 

as ’Busy’ because there is always a task that needs to keep on running. Furthermore, other TSS 

descriptor will be set to ‘available’, meaning that rest of the TSS descriptor is ready to be switched. 

Then, the task (task 1) of corresponding TSS is executed using the state information (Extended instructor 

pointer (EIP) – shows the address of a task) of TSS. When the task needs to be switched, task saves the 
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current state at the corresponding TSS. Next, when the saving is done, CPU points to the address ‘0x50’ 

of GDT which refer to the base address of TSS descriptor. Lastly, TSS descriptor points to corresponding 

TSS and EIP points to task 2 to execute. This is how the normal hardware task switching occurs. As 

shown in Figure 1, TSS contains lots of information to keep every state of the task. This can be inefficient 

when only certain amount of the information is important, and others are similar to most of the tasks. 
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Figure 1 Hardware task switching method. 
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However, software task switching (a.k.a software context switching) saves and loads only the 

state that is needed when executing a task. This method uses the function that can manage current 

stack pointer to save and reload the task. If the function is called, current stack pointer which used to be 

pointed by current instruction pointer is stored in the old stack. In contrast, if the function is returned, 

new instruction pointer points to new stack pointer which will pop off. During this process, there will be 

only necessary information for the task execution at the stack. Most of the OS uses the software context 

switching instead of hardware task switching. Unfortunately, hardware task switching is mostly not used 

but it still exists on computers because of the compatibility. To explain, there are still servers or 

computers still using old OS such as Windows 95, Windows 98, etc. and that is the reason that it still 

exists. 

2.2 Rootkit 

Hiding task can be seen from a rootkit as well. A rootkit is a set of programs and codes which 

can attack and be undetectable on a computer [1] by hiding from the user and the OS [2]. There are 

various methods to create a rootkit, such as LKM (Loadable Kernel Module) [3], Hooking, DKOM (Direct 

Kernel Object Manipulation) [4], AL-DKOM (All Link - Direct Kernel Object Manipulation) [5], and Kernel 

Mode rootkit [7]. Most of the rootkits are implemented using the clandestine programs or inserting the 

rootkit process in the OS scheduler. No matter which method is used to create a rootkit, the rootkit is 

still inside the OS managing boundary. Therefore, any tasks executed by the rootkit will be traced by the 

OS scheduler because the OS scheduler shows every running process. Therefore, using the existing 

detection method, existence of the rootkits can be detected. However, proposed method is 

fundamentally different from the existing rootkit. This is because it uses the hardware task switching 

from outside of the OS boundary. Furthermore, it is not detected by the detection method since there is 

no detection approach to find malicious hardware task switching. Prior to this work, there was no 

attempt to sue the task switching for creating rootkits nor hiding tasks in general. In addition, existing 
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rootkits tried to handle just the address or the link state of the processes [4]. Therefore, the proposed 

approach of manually using the hardware task switching is fundamentally different and can lead to 

further research on more sophisticated attacks and countermeasures.  

Kernel mode rootkit, also known as kernel level rootkit is one of the rootkit types that work at 

the kernel level [7]. Kernel is the deepest level of OS and it also needs higher authority to use the 

resources. Kernel mode rootkit itself modifies the system to compromise the target computer. It gains 

the access privileged authority of kernel (a.k.a ring 0) as shown in Figure 2 and uses the CPU’s resources. 

Most of the rootkits today use kernel mode rootkits [8] because it performs hidden behaviors easily and 

have access to the ring 0 authority. Ring 0 authority can also modify system values that shouldn’t be 

modified such as GDT, and TSS values because it can cause a huge conflict in the OS. Ring 0 authority can 

be easily achieved just by installing a driver which is also known as ‘.sys’ files. In this paper, using the 

ring 0 authority and unlike previous rootkits that modifies just the links between processes, we show 

modification of the system to operate hardware task switching method manually by installing ‘.sys’ file. 

 

Figure 2 Privileged level of computer. 
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2.3 Rootkit Detection Methods 

2.3.1 Behavior-Based Rootkit Detection 

 It attempts to detect the effects of the attack [9]. This detection method has the advantage of being 

able to detect the rootkits that were not detected before. In this method, the detector uses 3 steps [22] as 

shown in Figure 3 – Data collection, Interpretation, Matching algorithm. Data collection will collect the raw data 

of behavior of each program or process. Next, interpreter categorizes the programs or processes that have the 

similar behavior. Last, using the Matching Algorithm, when the rootkit does the unfamiliar behavior, it detects 

the rootkit as an attack. The drawbacks of this method are that False Positive Ratio is high and the amount of 

time to scan takes lots of time. 

 

Figure 3 Behavior based detection 

2.3.2 Signature-Based Rootkit Detection 

 It is also known as Fingerprint Identification. This method uses the pattern matching to find the 

attack. The pattern indicates the unique byte pattern or the signature of a rootkit [23]. The unique 

signature of rootkits is from already known rootkits [10] Therefore, the advantage of this method is that 
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it has high accuracy of detecting the rootkit. However, it also has a critical drawback that it can only 

detect only the known rootkits. 

2.3.3 Integrity-Based Rootkit Detection 

It finds out a change of system files or OS components that was unauthorized [9]. To find out the 

change of the file, it checks the CRC values. In addition, the detector keeps on calculating and comparing 

the CRC among the initial system files. The advantage of this detection is that it can detect what exact 

damage the rootkit has done. However, the drawback of this method is that comparing the CRC 

between the original and the modified can sometimes be different due to the change of the original 

system file itself. A typical program using Integrity-Based Detection is Tripwire. 

2.3.4 Hooking-Based Rootkit Detection 

[11] is relatively an easy detection method. This tries to scan the computer and find where the 

hooking has happened. For the service or interrupts, hookings such IDT, SSDT has function pointers in 

certain memory area. In addition, when rootkit modifies the hook for the malicious action, it goes out of 

the certain memory area that it was supposed to be which makes it easy to detect. 

3 Methodology 

 This section presents how to create an independent scheduler besides of the OS scheduler 

using hardware task switching method. In addition, using independent scheduler can be a flaw of the 

computer and we show how this is threatening. Task Switching method can be categorized in 2 ways. 

First is software context switching which Windows OS currently provides. The other is hardware 

switching which basically Intel CPU provides. OSes use software context switching to save only the state 

value of the necessary ones and hardware task switching method is left abandoned mostly and be used 

only at the special cases such as using old OS. Therefore, we researched what happens when software 

context switching and hardware task switching coexists at the same time. Since everything needed for 

hardware task switching already exists on the computers, the only thing we need to do is to use the 
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tables (GDT, TSS) and system values. Currently, these values are just in simple numbers and its objective 

to task switch is not operated. Therefore, to use the tables and system values, we implemented newly 

designed driver that has a task that we created and code that makes to use the tables and systems. The 

reason to implement the driver is to obtain the ring 0 authority in order to use the tables and values. 

In Figure 4, we set Timer value to 1 second to make each of the task switching method to work 

alternatively. If we don’t, only one method would keep on running. This result makes the users to feel 

that the both switching methods execute simultaneously. In addition, results have shown that OSes 

cannot detect CPU scheduler using hardware task switching method. We used this undetectable feature 

to make the task stealthy and used EIP value in TSS to trigger the task in the implemented driver. In the 

following sections, we present the environment of proposed method, and show that it is executing 

undetected. 

 

Figure 4 Adapt Timer value at implemented driver for software context switching and hardware task switching 

tasks to look as if they are executing simultaneously 
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3.1 Environment Establishment 

Development environment we used is Microsoft C/C++ Compiler Driver named c1.exe for 

compiler, Microsoft Incremental Linker named link.exe for linker and Windows DDK for driver 

development. Proposed method was created in 32-bit Windows XP OS and was tested through loading 

Windows Driver.  

 

Figure 5 Windows XP Kernel Debugging Environment 

Table 1 Development environment 

 

32-bit Windows XP was used but it can be extended to any other 32-bit OS. Windows XP was 

used in this research because most of the anti-rootkit tools are working in Windows XP well and 

Windows XP has the least restriction for implementing rootkits that can make suitable for testing 

environment. The reason we use anti-rootkit tools is because the way we are hiding the task acts just 

like rootkits. The most important key point of the proposed method is not the version of OS. Instead, 

acquiring ring 0 authority through loading the driver is the key point of this research. In addition, for 

setting the Windows XP kernel debugging, we added ‘/debugport=COM1 /baudrate=115200 in 

C:\boot.ini’. Brief information of development environment is shown in Figure 5 and Table 1. Figure 5 is 

showing the kernel debugging environment and Table 1 is showing the brief development environment 
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of the research. Figure 6 is the structure of TSS and Windows has total of 4 for each Intel processor for 

32-bit. 

 

Figure 6 TSS Structure 

In Windows OS, one of the four TSS structure is existing at the address ‘0x28’ and it is set to 

‘busy’ bit. To be specific, set by ‘busy’ bit means that corresponding TSS structure is currently being 

used and at the same time, other TSS structures are set to ‘available’ bit which presents that they are 

the candidate to be used when task switching occurs. In the research, we use the address ‘0x50’ for 

task switching between address ‘0x28’. We set timer value during the task switching operation so that 

it does not conflict with the original OS scheduler. If there are no timer values set, software context 

switching and hardware task switching cannot coexist together because only one of the 2 methods will 

occur not yielding themselves to be switched to the other scheduler.  
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Figure 7 Jump statement for Hardware Task Switching 

In Figure 7, it is an operation code (opcode) of jump (Jmp) to run hardware task switching. Jump 

statement is used so that the machine can jump to one TSS to other TSS.  

3.2 Undetected task using Hardware Task Switching 

In this section, we present how hardware task switching method is used as an undetected task. 

To explain, task executed by hardware task switching method is not detected by the OS. To prove that the 

created task is undetectable, we created two different scenarios where tasks are executed either with or without 

the proposed hardware task switching. Task can be referred to as a function in a code. Task in both scenarios 

repeatedly print lines until the task switching happens. Next, we verify through Windbg program to see whether 

the function was working properly or not and checked the CPU usage by running the task management tool 

provided by the OS. 
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Figure 8 Normal function call and Hardware Task Switching function call 

As shown in Figure 8, the normal function call in (a) prints ’Function Calling number’ which is a 

normal task and hardware task switching function call in (b) prints ’Task Switching number’ which is a 

task operated through hardware task switching method. Result show that normal function call shows 

55% of CPU usage and the hardware task switching function call shows almost no CPU usage below 2%. 

The small CPU usage is due to some other normal system tasks running in the background. In summary, 

execution of normal task call shows the usage of CPU but execution of same function through hardware 

task switching shows no CPU usage from the view point of OS. This shows that the task through 

hardware task switching method can use the CPU’s resources without OS noticing about it. In addition, 

modifying EIP value to point the address of my own task using TSS can lead not to expose the source of 

the actual action of my own task. To be clear, as an example, with this method, computer user might 

know somehow that something suspicious is happening but cannot know from where this is happening. 

This is because the OS cannot find the source of the actual action. 
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Table 2 Result of detecting proposed method through existing detection tools 

 

Furthermore, using the proposed method, we used rootkit detection tools to see whether it 

catches the creation. Among the existing tools, proposed method was undetectable. As shown in Table 

2, Icesword [12], Malwarebytes antirootkit [13], Sophos Virus Removal Tool [14], and TDSSKiller [15] are 

signature-based detection tools. nPortect Onlince Security [20] is a behavior-based detection tool and 

Afick [16] is an integrity-based detection tool. Finally, Gmer [11, 17], and Radix [18] are hooking 

detection tools. As a result, we found out that these tools could not detect the proposed method which 

uses CPU secretly from the OS. 

4 Result 

 In this section, we present how the proposed method can be used in the real world. The key 

feature of the proposed method is that it executes tasks secretly from the OS. We show how the OS 

works during the proposed method by measuring the execution time and CPU usage. If the task through 

hardware task switching occurs, only the CPU utilization from OS task is calculated, not the task from the 

driver task. We tried to find out how the software context switching and hardware task switching can 

coexist. To be specific, we experimented tasks of the OS scheduler and hardware scheduler to see how 

the task from hardware scheduler affect OS scheduler. To find out the relation, we measured the 

execution time of a task of approximately 55% of CPU usage executed in OS scheduler. At the same 

time, we made hardware task switching happen simultaneously for many cases. For each case, we made 
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the task more complicate to increase the CPU utilization. When measuring the time, we calculated the 

total time of execution counted by the OS timer and the online timer. This is because we assumed that if 

the total amount of CPU utilization of tasks in both (OS and hardware schedulers) goes above 100%, 

then the OS might stop at that moment. In addition, this explains why OS timer stop as well, and this 

makes the actual time (online time) different from the OS time. Then, we calculate the average time of 

each OS times and online times from 100 trials. For the task run in hardware, we incremented the 

printed lines in the task to increase the utilization of the CPU.  

 

Figure 9 Executed time comparison between OS time and online time 

In Figure 9, x-axis shows the number of printed lines in task from hardware scheduler which the 

CPU utilization increases as the lines increment. In addition, y-axis shows the seconds of OS timer, and 

online time it took to execute a task in OS. As the graph shows, the difference between the OS time and 

online time begin to increase from the point where printed lines are 50 in the task from hardware. The 

larger the gap between the OS time and online time becomes, there will be high possibility for the user 

of the OS to notice that there is something suspicious from the computer because the computer will 

become slow at certain time.  
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Figure 10 CPU utilization graph for normal task and task through hardware task switching 

Next, to check whether the computer is becoming slow due to the task executed through 

hardware task switching, we measured the actual CPU utilization percentage using the task 

management provided by the OS. Since only one task is executed in the OS that was made to use CPU 

utilization of maximum 55 %, the percentage is the same during the other trials as well. The problem is 

measuring the CPU utilization percentage of task through hardware task switching because OS cannot 

detect the task of hardware scheduler. Therefore, in the experiment, we calculated the CPU of the same 

task in driver that does not use hardware task switching method. It allows OS to detect the task and 

measure the CPU utilization percentage again. As shown in Figure 10, x-axis is showing the printed lines 

from the task and y-axis shows the maximum CPU usage for each case. The green line shows the 

required CPU usages from both tasks, orange line shows the maximum usage from task using hardware 

task switching, and blue line shows the maximum usage from task in OS. As shown in Figure 10, printed 

lines of 50 is the point where the sum of percentage of CPU utilization goes above 100 %. To explain, this 

indicates lots of meaningful signs.  
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Table 3 Result of task execution 

 

In Table 3, required CPU utilization can be calculated by adding the results from executing the 

tasks from both the OS and hardware schedulers. If the sum of CPU usage of both (Required CPU 

utilization) tasks become over 100%, it would make the user feel that the computer is becoming slow. 

This is because as the required CPU utilization reaches over 100%, the time difference of the execution 

time between the OS timer and the online timer increases. In this case, user will become suspicious 

about the computer and will start to actively seek for solutions. However, this is not the behavior of the 

user that attacker wants. Therefore, as long as the CPU usage stays below 100%, it will not change the 

user’s quality of experience. Moreover, this approach can be extended to dominate the CPU resource of 

servers. Since many users share a server, it will become more difficult to detect as the users may think 

that the resource is simply occupied by other users. Another approach is to use low CPU resources from 

many computers, such as Zombies, so that users are completely unsuspecting the attack. A similar work 

was done previous in [19]. However, [19] is fundamentally different from our method that it used the 

hypervisor authority to use the CPU and it is for the virtual machine environment. In addition, hypervisor 

authority is an authority which is hard to achieve while the proposed method needs the ring 0 authority. 

5 Discussion and Recommendation 

In this section, we discuss about the limitations, the possible detection method and further research. 

Proposed method has some advantages such as not being detected from the OS and a totally different 

approach that has not been used for making rootkit previously.  
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Furthermore, there is a need for a caution that ring 0 authority has much higher authority than 

it should have. This is because by only achieving ring 0 authority, you can modify TSS, GDT values which 

could make a possibility of making another scheduler. There shouldn’t be any scheduler except the OS 

scheduler because it could conflict the system itself. There should be an effort to reduce the authority of 

ring 0.  

Limitation of the proposed method has is that it can only work for 32-bit OS. However, there are 

still many servers using 32-bit OS and theoretically 64-bit OS is also possible to make another scheduler 

besides the OS scheduler using software context switching method. In addition, extension to 64-bit 

Windows and other operating systems is in progress.  
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6 Conclusions 

In this paper, we proposed a new way to create an undetectable task using hardware task 

switching. The ring 0 authority can be achieved easily through installing a newly created driver. Being 

able to create a new scheduler outside of the OS management boundary can make the system 

vulnerable and can give rise to various new attacks. Attacks can dominate server’s CPU usage or mine 

cryptocurrencies from the users’ computers without being noticed. Therefore, further research effort is 

needing to detect such attacks by designing more sophisticated detection methods that also examines 

the GDT and TSS structure. We also recommend that the authority of ring 0 needs to be reduced or be 

redesigned to consider various prevailing scenarios. 
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