
Cristofaro Mune
(c.mune@pulse-sec.com)
@pulsoid

System-level threats:

Dangerous assumptions in modern Product
Security

Me

• Cristofaro Mune (@pulsoid)

- Product Security Consultant/Researcher

- Keywords: TEE, IoT, Devices, HW, Fault Injection, Exploitation,...

• (Public) Research:

- [2009] - “Hijacking Mobile Data connections”

- [2010] - AP Exploitation

- [2015] - Breaking WB cryptography

- [2017] :

• TEEs secure initialization

• IoT exploitation

• Linux Privilege Escalation with Fault Injection

Devices and markets

Networking

Physical Security

Mobile devices

Smart homes

Mobile Payments Automotive

Who “owns” a device?

iPhone X components and suppliers (some)

*from capitalistlad.wordpress.org

Example: Apple suppliers 2018

Who owns a device?

“Nobody.

Really, nobody FULLY owns a device.”

Device == ecosystem effort  PRODUCT

IP

Manufacturer(s) {1, …}

• HW Design

• HW Security primitives

Manufacturer(s) {2, …}

• SoC HW Design

• HW Security features

• TEE HWSoC

Manufacturer(s) {3, …}

• Low level SW Security features

• SoC-lvl 3rd party SW components

• TEE SW

OEM

• Final PCB design

• System SW development (REE)

• OEM-lvl 3rd party SW components

SOC + Low-lvl
SW

Final
Product

• Each component in the chain has its own:

- Threat models, use cases and assumptions

Assumptions?

“Assumptions at boundaries may cause system-
level vulnerabilities”

Assumptions!

“A few recurring classes (out of my experience)…”

Completeness

Assumption of Completeness

“Component-level information is sufficient for
characterizing security impacts on the final

system”*

* Applies both to design and security assessments

Example: SW security assessment

• A strcmp() classic implementation

• Taken from open-source project uClibc-ng

• Aimed at embedded devices

- Latest available version: v1.0.31

• Full source code available

Any vulnerability?

https://elixir.bootlin.com/uclibc-ng/v1.0.31/source/libc/string/generic/strcmp.c

Vulnerable?

Threat model (TM): only SW attacks

Not vulnerable

But…

Early
termination

Timing attack

https://elixir.bootlin.com/uclibc-ng/v1.0.31/source/libc/string/generic/strcmp.c

What about now?

• If attacker is able:

- to access a measurable channel

- to sample with sufficient precision

• If compared quantity is a security asset:

- e.g. A password, a MAC,...

Vulnerable

Depends on the system.

OK…which Threat Model applies?

strcmp()

SW attacks only

SW + Timing

Vulnerable

Not VulnerableSW Component

Threat Models

Secure component  Vulnerable system

strcmp()

Final
Product

TM(Component) = SW only TM(System) = SW + Timing attacks

Vulnerable
SystemSECURE

SECURE

Remarks: Vulnerability

• Component level information insufficient

• Vulnerability cannot be assessed at component level

- Depends on final system Threat Model

• Code review does not solve the problem

- Unless a Threat Model is specified

• Only “next stage” integrators are able to assess vulnerability:

- E.g: OEMs at the final product integration

Exploitability?

• String comparison:

- “Impractical in the vast majority of cases” 2015 – Morgan &
Morgan

- Remote servers with fast CPUs

• But... IoT systems are much slower!

* 2014 – Mayer, Sandin – “Time Trial”

*

Demo

• Target: Arduino UNO

- Clock speed: 16 Mhz

- Media: Ethernet 100Mbit

• Numeric PIN: 8 digits

22
(Live demo: Come tomorrow at HITB Armory!)

Remarks: Exploitability

• Exploitability cannot be assessed at component level

- Even with full source code

• Impact depends on final system:

- E.g. Clock speed, measurable channels,...

Full impacts can be established only at final product
integration

Assumption of Completeness

“Component-level information is sufficient for
characterizing component security impact on

the final system”*

* Applies both to design and security assessments

Always ask for...

• Threat Model

• Existing development security processes:

- SDLC, Design security reviews, Source code audits, Product
Penetration Testing

• Existing in-field security processes:

- Security fixes, Security maintenance (e.g. Firmware update for 5
yrs),...

• Security evaluation reports

25

“When buying components, you are also
buying risks”

A good example: ARM TrustZone

26

Threat Model specified in documentation

Correctness

Assumption of Correctness

“The system will always behave as intended.
Correctly executing as specified.”*

* Applies both to design and security assessments

Fault attacks

“Introducing faults in a target to alter its intended behavior.”

• A controlled environmental change leads to altered
behavior in a target

• Leverage a vulnerability in a hardware subsystem

Clock Voltage EM Laser

Assumption: Expensive

Chipwhisperer Lite FPGA

Microcontroller

~$250

~$99

< $30

VCC glitching cost ($): < 300

• Also “Cheapscate: Attacking IoT with less than $60” - Raphael Boix
Carpi

Other assumptions

• Physical access is required:

- Wrong. SW-initiated FI attacks can be performed remotely:

• Rowhammer and CLKSCREW

• No security decision point  Nothing to attack:

- Wrong. New fault models allow for direct code exection.

• We have countermeasures in SW:

- Wrong. New fault models can completely bypass SW FI
countermeasures

• Our secure boot is encrypted. You need a key anyway:

- Wrong.

- Wait a minute. 

Secure Boot

Signature

Flash

Boot stage

Textbook attack

Glitch here  Signature
bypass

Signature

Flash
(Attacker)

Arbitrary code execution

Modified
Boot stage

“Instruction skipping”

Encrypted Secure Boot

Flash
(Normal)

Signature

Boot stage
(encrypted)

FI textbook attack insufficient

Signature bypass useless

Flash
(Normal)

Signature

Modified
Boot stage

Unknown encryption key

Creating execution primitives…out of thin air

36

• ARM32 has an interesting ISA

• Program Counter (PC) is directly accessible

Attack variations (SP-control) also affect other architectures

Valid ARM instructions

Corrupted ARM instructions may directly set PC

*also see [FDTC 2016]: Timmers, Spruyt,
Witteman

ROM code: secure boot + encryption

Flash
(Attacker)

Signature

Payload
(plaintext)

stage_addr*10000

Glitch while loading
pointers  PC set to
pointers  Code exec

at stage_addr*

Never executed

*also see [FDTC 2016]: Timmers, Spruyt,
Witteman

Remarks

• FI vulnerabilities located at physical level

• Cannot be identified via HW or SW code review

• Only testing the real implementation can provide indications
of vulnerability

• Testing better performed right after silicon integration:

- e.g. SoC Manufacturer

• Vulnerable HW may affect entire classes of devices

Assumption of Correctness

“The system will always behave as intended.
Correctly executing as specified.”*

* Applies both to design and security assessments

FI in your threat model?

• Ask your SoC manufacturer for Security evaluation reports:

• Do NOT rely only on HW/SW audits only

• Only testing can uncover FI vulnerabilities

40

“Either you have countermeasures, or…

…you are painfully, desperately vulnerable”

Consistency

Assumption of Consistency

“The entire system has only one threat model
and protects the same assets.”

Assumption

IP

Manufacturer(s) {1, …}

Manufacturer(s) {2, …}

SoC

Manufacturer(s) {3, …}

OEM

SOC + Low-lvl
SW

Final
Product

One single Threat Model

Feasible?

A typical Security Model...

Kernel

Users process Users process Users process Users process

User space

Kernel space

...with a TEE

ARM TrustZone SoC (TEE HW)

REE TEE

TEE security model

No intention to protect REE…

REE TEE

BlackHat 2015

47

Users process

Linux Kernel Driver

TEE

Pass Kernel address for
output

Kernel memory overwrite!

TEE has no way of
distinguishing REE

memory

REE

Remarks

• Different security models may be present at the same time

• May not be aware of each others

• May be leveraged AGAINST each others

Assumption of Consistency

“The entire system has only one threat model
and protects the same assets.”

Recommendations

• Understand components’ Security Model

- Does it fit with your Security Model?

• Evaluate within system Threat Model

“There may be no consistency, across
components and subsystems.”

…expect none…

Isolation

Assumption of Isolation

“There is only sub-system.

Mine”

A simplistic model

CPU
DDR

User process

Kernel

Reality: other IPs can access DDR

Example: Broadpwn

Main SoC

DDR

User process

Kernel

WiFi SoC

Remarks

• SoCs  “execution units”

• Other SoCs may have access to Main SoC DDR

• May not be aware of each others’ Security Models:

- Kernel vs userspace in SoC1  Plain addressable memory for
SoC2

What could have been done?

Main SoC

DDR

User process

Kernel

WiFi SoC

SW review, testing

(WiFi SoC SW)

SMMU design

(Main SoC HW)

SMMU configuration

(Main SoC: BL2/TEE)

And we are missing…

• Other execution units:

- Audio/Video Processors

- GPUs

- Power Modules

- ...

• DMA-capable IPs:

- USB

- Firewire

- PCMCIA

- PCIe

- …

• Other Bus masters IPs
58

There can be
hundreds…

Assumption of Isolation

“There is only sub-system.

Mine”

Reality

60

Conclusions

Reflections

• System Security:

- Threat Models may differ between Components

- Security(System) ∑i Security(Componenti)

• Security Evaluation:

- Context and system-level information required for assessment

- Code reviews cannot identify all vulnerabilities (e.g. FI)

• Design:

- HW and SW must cooperate. Across the whole system.

• Regardless of Manufacturer, Department, Teams boundaries

- Protect FROM other sub-systems

“Unchecked assumptions at boundaries can be fatal”

Recommendations

• Estabish a system-level threat model:

- Apply and verify consistency everywhere

• For every HW/SW component:

- Gain understanding of use case and threat models

- Test and review thoroughly

• Security assessment and testing MUST consider:

- System Threat Model

• For every 3rd party component ask:

1. Threat Model

2. Security practices and processes

3. A security evaluation report

- You are already paying for it.

c.mune@pulse-sec.com

Cristofaro Mune

Product Security Consultant

Contacts

mailto:c.mune@pulse-sec.com
mailto:c.mune@pulse-sec.com
mailto:c.mune@pulse-sec.com

