System-level threats:

Dangerous assumptlons In modern Product
Security . -

Cristofaro Mune
(c.mune@pulse-sec.com)
@pulsoid

* Cristofaro Mune (@pulsoid)
- Product Security Consultant/Researcher

- Keywords: TEE, loT, Devices, HW, Fault Injection, Exploitation,...

* (Public) Research:
- [2009] - “Hijacking Mobile Data connections™
- [2010] - AP Exploitation
- [2015] - Breaking WB cryptography
- [2017]:

e TEES secure initialization

* |0T exploitation
* Linux Privilege Escalation with Fault Injection

7

Physical Security

Smart homes

Networking

Mobile Payments Automotive

Q John McAfee

@y wallet) | am CEO of BitFi

Accelerometer

Bosch & Ivensense

Baseband Processor

Qualcomm

Batteries

Samsung & Shenzhen Desay Battery
Technology

Chips

Cirus Logic, Samsung, TSMC, MicroSemi,

Broadcom & NXP

DRAM

TSMC & SK Hynics

eCompass
Alps Electric

*from capitalistlad.wordpress.org

Where Apple suppliers
are headquartered
(number of companies)
Singapore 5— audi Arabia 1

Hong Kong ‘

South Korea. \
P

EU, 10
Switzerland,A
o Total

China— 27 200

«Q

U.S.
Source: Apple’s list of suppliers for 2018

Taiwan
/

N
Japan

John McAfee @
@officialmcafee

allet. | am CEO of BitFi

“Nobody.
Really, nobody FULLY owns a device.”

SW

HW Design

HW Security primitives

SoC HW Design
HW Security features
TEE HW

SoC-Ivl 3 party SW components
TEE SW

Final PCB design
System SW development (REE)
OEM-Ivl 3" party SW components

 Each component in the chain has its own:
- Threat models, use cases and assumptions

“Assumptions at boundaries may cause system-
level vulnerabilities”

“A few recurring classes (out of my experience)...”

Completeness

“Component-level information is sufficient for
characterizing security impacts on the final
system”*

* Applies both to design and security assessments

* A strcmp() classic implementation

* Taken from open-source project uClibc-ng

* Aimed at embedded devices
- Latest available version: v1.0.31

 Full source code available

31 1Int strcmp (char *pl, char *p2)

32 {

33 unsigned char *sl = (unsigned char *) pl;
34 unsigned char *s2 = (unsigned char *) p2;
35 unsigned reg char cl, c2;

36

37

38 {

39 cl = (unsigned char) *sl++;

40 c2 = (unsigned char) *s2++;

41 (cl == "\0")

42 cl - c2;

43

45 (cl == c2);

46

47 cl - c2;

48 }

https://elixir.nootlin.com/uclibc-ng/v1.0.31/source/libc/string/generic/strcmp.c

Threat model (TM): only SW attacks

!

Not vulnerable

31 1Int strcmp (char *pl, char *p2)

32 {

33 unsigned char *sl = (unsigned char *) pl;
34 unsigned char *s2 = (unsigned char *) p2;
35 unsigned reg char cl, c2;

36

37

38 {

39 cl = (unsigned char) *sl++;

40 c2 = (unsigned char) *s2++;

41 (cl == "\O0")

42 cl - c2;

43

45 (cl == c2);

46

47 cl - c2;

https://elixir.nootlin.com/uclibc-ng/v1.0.31/source/libc/string/generic/strcmp.c

If attacker Is able:
- to access a measurable channel

- to sample with sufficient precision

* If compared guantity is a security asset:
- e.g. A password, a MAC,...

Depends on the system.

VVulnerable

Threat Models

SW attacks only

SW Component \\/

stremp() S 2

/
\ SW + Timing

Vulnerable

Not Vulnerable 3

TM(Component) = SW only TM(System) = SW + Timing attacks

> Pr;gﬁlct - Vulnerable
SECURE = SyStem

4

SECURE

Component level information insufficient

Vulnerability cannot be assessed at component level
- Depends on final system Threat Model

Code review does not solve the problem
- Unless a Threat Model is specified

!

Only "next stage” integrators are able to assess vulnerabillity:
- E.g: OEMs at the final product integration

* String comparison:

- “Impractical in the vast majority of cases” 2015 — Morgan &
Morgan

- Remote servers with fast CPUs

* But... loT systems are much slower!

that differ in the first character vs. strings that differ only at the 10th character. This indicates
that timing attacks on regular string comparison have to be assumed feasible for any embeddec
system.”

* 2014 — Mayer, Sandin — “Time Trial”

* Target: Arduino UNO
- Clock speed: 16 Mhz

- Media: Ethernet 100Mbit

* Numeric PIN: 8 digits

Candidate password: 31337890
Verifying: 31337890

Success!

Verification successful!
Password found!!!

[+] Attack Completed

Total requests: 68002

Bruteforce complexity: 100000000
Ratio: 0.07%

(Live demo: Come tomorrow at HITB Armory!)

22

* Exploitability cannot be assessed at component level
- Even with full source code

* Impact depends on final system:
- E.g. Clock speed, measurable channels,...

!

Full impacts can be established only at final product
integration

* Applies both to design and security assessments

Threat Model

Existing development security processes:

- SDLC, Design security reviews, Source code audits, Product
Penetration Testing

Existing in-field security processes:

- Security fixes, Security maintenance (e.g. Firmware update for 5
yrs),...

Security evaluation reports

“When buying components, you are also
buying risks”

25

Note
TrustZone technology 1s designed to provide a@re-enfﬂrced logical se@

between security components and the rest of the SoC infrastructure-

@attacks are outside of the scope of the protection provided TrustZone techno@
although a SoC using TrustZone cam be used inconjunction with an ARM SecurCore®

smartcard if protection against physical attacks 1s needed for some assets.

Threat Model specified in documentation

26

Correctness

“The system will always behave as intended.
Correctly executing as specified.”*

* Applies both to design and security assessments

“Introducing faults in a target to alter its intended behavior.”

© f %

Clock Voltage EM Laser

* A controlled environmental change leads to altered
pehavior in a target

* Leverage a vulnerability in a hardware subsystem

Chipwhisperer Lite

Microcontroller

o Also “Cheapscate: Attacking loT with less than $60” - Raphael Boix
Carpl

VCC glitching cost ($): <300

* Physical access is required:
- Wrong. SWh-initiated FI attacks can be performed remotely:
« Rowhammer and CLKSCREW

* No security decision point = Nothing to attack:
- Wrong. New fault models allow for direct code exection.

* We have countermeasures in SW:

- Wrong. New fault models can completely bypass SW FI
countermeasures

* Our secure boot is encrypted. You need a key anyway:
- Wrong.
- Wait a minute. ©

int load exec next boot stage()({

uint32 t stage addr=0xdo000000;

uint32 t sig addr=0xc0000000; -
Boot stage
1Dad_next_5tage{stagjiziiilL,,,———.

load signature(sig addr);

(!lverify signature(stage addr,sig addr)) {

(1);
{

exec stage(stage addr);

Flash

, (Attacker)
int load exec next boot stage()({

uint32 t stage addr=0xdo000000;
uint32 t sig addr=0xc0000000;

Modified

lmad_next_stage{stagi:;frj;_,————— Boot stage

load signature(sig addr); Signature
]

(!verify signature(stage addr,sig addr)) {

. Glitch here = Signature
q (1); bypass

Arbitrary code execution
exec stage(stage addr);

“Instruction skipping”

5 1int load exec next boot stage()({ Flash
6 (Normal)

7 AES ctx;
8 uint32 t stage addr=0xd0000000;
: uint32 t sig addr=0xc000000;

—
bt

10
11 init AES englne(&ctx, key id); Boot stage
12 (encrypted)
13
14 load encrypted next stage(stzsz< -
15
17 load signature(sig aadr); .]
18
19

0 decrypt stage(&ctx, stage addr);

1

2

3 (!verify signature(stage addr,sig addr)) {

._'I_

5

6 (1);
: {

exec stage(stage addr);

5 1int load exec next boot stage()({ Flash
6 (Normal)

8 uint32 t stage addr=0xd0000000;
uint32 t sig addr=0xc000000;

=
Ykt

10

11 init AES englne(&ctx, key id);

12 Modified

13 Boot stage

14 load encrypted next stage(stage addr); --

15

17 load signature(sig addr); —

18

19 .
0 decrypt stage(&ctx, stage addr); Unknown encryption key
1
2 .
3 (lverify signature(stage addr,sig addr)) 7 Signature bypass useless
._'I_
5

6 (1);
: {

exec stage(stage addr);

e ARMS32 has an interesting ISA

 Program Counter (PC) is directly accessible

Valid ARM instructions

MOV r7,rl
EOR r0,rl
ILDR r0, [rl]
LDMIA r0O, {rl}

00000001
00000001
00000000
00000010

01110000
00000000
00000000
00000000

10100000
00100000
10010001
10010000

Corrupted ARM instructions may directly set PC

LDMIA r0O, {rl,

00000001
00000001
00000000
00000010

11110000 10100000
11110000 00101111
11110000 10010001
10000000 10010000

11100001
11100000
11100101
11101000

11100001
11100000
11100101
11101000

Attack variations (SP-control) also affect other architectures

*also see [FDTC 2016]: Timmers, Spruyt,

Witteman

36

N B Ll b = O U

=
Ykt

N B Ll b = O U

D G0 ~Jd O

int load exec next boot stage()({

AES ctx;

uint32 t stage addr=0xd0000000;
uint32 t sig addr=0xc000000;

init AES englne(&ctx, key id);

Lload encrypted next stage(stage addr);
load signature(sig addr);

decrypt stage(&ctx, stage addr);

(!verify signature(stage addr,sig addr)) {

(1);
{

exec stage(stage addr);

Flash
(Attacker)

Payload |
(plaintext)

Glitch while loading
pointers =2 PC set to
pointers = Code exec

at stage addr*

“

*also see [FDTC 2016]: Timmers, Spruyt,

Never executed

Witteman

FI vulnerabilities located at physical level

Cannot be identified via HW or SW code review

Only testing the real implementation can provide indications
of vulnerability

Testing better performed right after silicon integration:
- e.g. SoC Manufacturer

Vulnerable HW may affect entire classes of devices

* Applies both to design and security assessments

* Ask your SoC manufacturer for Security evaluation reports:

* Do NOT rely only on HW/SW audits only

* Only testing can uncover FIl vulnerabilities

“Either you have countermeasures, or...
..you are painfully, desperately vulnerable”

40

Consistency

“The entire system has only one threat model
and protects the same assets.”

Manufacturer(s) {1, ...} —

______________________ s

pleplail) e RL - D0 S B ; ____________________________

SW

Feasible?

Kernel space

Kernel

Y

User space

Users process

Users process

Users process

Users process

R E E Normal World

Secure World TE E

|

|

|

|

|

|

|

|

|

|
|
|

EL1 Guest Linux Kernel A Guest Linux Kemel B : Secure EL1

|
|
|
|
|
|
|
|
|

ELO Guest A Guest A Guest B Guest B

App 1 App 2 App 1 App 2 Secure ELO

EL2 UEFI Hypervisor
) Key :
SMC i | EL3 Executon E
EL3 Runtime EL3 Firmware (Secure Monitor) Fir?no:;re E:,z ;::::m

REE

Rich OS Application Environment

S T8

Cllent Appllcatlons

cution Environment

Trusted
Application

Trusted
Application
DRM

Trusted
plication
orporate

GlobalPlatform
TEE Functional API

GlobalPlatformT EE Internal API

GlobalPlatform TEE Client API

Trusted Core Trusted
Environment Functions

TEE Kernel

HW Keys, Secure Storage,
HW Secure Trusted Ul (Keypad, Screen),

Crypto accelerators,
Resources EC controller,
Secure Element, etc.

No intention to protect REE...

TEE

REE

Kernel memory overwrite!

TEE

TEE has no way of
distinguishing REE
memory

Pass Kernel address for
output

\

Users process

47

* Different security models may be present at the same time

* May not be aware of each others

* May be leveraged AGAINST each others

S
y <2
S
s : o
— \l ..‘.- J 7
V74 .
v 4'.-"4 2
e en tl {4 . \'- “ ‘ "
£ W12 v,
= <
= Sy Sy B A
& {7 R v T = = ,
A s8N < £) W I.,.{. o
- - £ ¢ L Nl
P - 4 . e ol it ,,
S S Gt N e Nl Y ' -
X ey S 35S ;
2 - P L
X s ~
o
- ;
o Y oD
-
-y

* Understand components’ Security Model
- Does it fit with your Security Model?

* Evaluate within system Threat Model

“There may be no consistency, across
components and subsystems.”

...expect none...

Isolation

“There is only sub-system.
Mine”

Kernel

DDR

User process

(PL330)

Genena

Intermupt
Contraller

(PL380)

Klain Processo

Cortex-AR

|
LZ Cache

(PL310)

i o) n

TZASC
(PL3E0)

v

DMC
(PL34D)

S

l . - 55
—~S—p AX|to AFE w—5—

SMC Display — 55— Bridge -
(PL3E0) Controller L " a4
I R ——e—
- » NS Timer
Flash Display _ _

Mon-sacure

_ Configurable or Security Awars

fMaobile
Aernal

Kernel
EE

DDR
—> User process

e SoCs = “execution units”

* Other SoCs may have access to Main SoC DDR

* May not be aware of each others’ Security Models:

- Kernel vs userspace in SoC1 - Plain addressable memory for
S0C2

SW review, testing SMMU design

i (WiFi SoC SW) (Main SoC HW)
Kernel
DDR
_ User process
SMMU configuration
(Main SoC: BL2/TEE)

 Other execution units:
- Audio/Video Processors

- GPUs
- Power Modules

There can be

/ hundreds...

K DMA-capable IPs: \
- USB

-irewire
PCMCIA
PCle

k—... /

e Other Bus masters IPs

58

It's full of stars....

Conclusions

* System Security:
- Threat Models may differ between Components

- Security(System) 5% 2 Security(Component;)

e Security Evaluation:
- Context and system-level information required for assessment

- Code reviews cannot identify all vulnerabilities (e.g. Fl)

* Design:
- HW and SW must cooperate. Across the whole system.

* Regardless of Manufacturer, Department, Teams boundaries
- Protect FROM other sub-systems

“Unchecked assumptions at boundaries can be fatal”

* Estabish a system-level threat model.
- Apply and verify consistency everywhere

* For every HW/SW component:
- Gain understanding of use case and threat models

- Test and review thoroughly

* Security assessment and testing MUST consider:
- System Threat Model

* For every 3" party component ask:
1. Threat Model

2. Security practices and processes
3. A security evaluation report
- You are already paying for It.

Y, |

Cristofaro Mune

Product Security Consultant

c.mune@pulse-sec.com

mailto:c.mune@pulse-sec.com
mailto:c.mune@pulse-sec.com
mailto:c.mune@pulse-sec.com

