
CEDRIC TESSIER
SECURITY RESEARCHER / ctessier@quarkslab.com

Vulnerability research:
what it takes to keep going

and going and going…

JD-HITBSECCONF 2018, BEIJING

Who Am I?

• Obviously not Fred Raynal (aka pappy)
• No grey beard, way too young ;)

• Cédric Tessier (@nezetic)
• One of Fred’s padawans

• Dark arts enthusiast
• Reverse engineering
• Vulnerability research
• Functional programming
• Black metal

2

Vulnerability Research

● motive (why)

● attack surface (where)

● knowledge (how)

● first move (when)

Vulnerability research cannot be reserved to
the bad guys…

… as it will give them the advantage

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 3

Offensive Security

From a defensive only security paradigm…
…to both defensive AND offensive

● Deep complementarity

● Counterbalance bad guys advantages

● Increase the cost of attacks

● Knowledge is power

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 4

Platforms Diversity

• Huge diversity of platforms

• toward the end of Wintel (Windows + Intel x86) era

• ARM's dominance on mobile markets

• MIPS, PowerPC, [your 90s architecture] still kicking

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 5

Software Complexity

• Increasing complexity of the applications

• multi-megabyte software libraries are common

• web browsers are more like small operating systems

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 6

• Closed source binaries

• very common in the industry

• require reverse engineering

• but fewer eyes often means more bugs…

Increased Difficulty

• Overall improvements over the past years

• more mitigations and compiler enhancements

• better development cycles (continuous bugs hunt)

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 7

• Finding exploitable bugs is more difficult

• low-hanging fruits less and less common

• yes, it’s bad news (think as a James Bond villain)

Finding vulnerabilities

• Never-ending quest (growing code base)

• Renewed challenge (increasing difficulty)

• Competitive field (inflating investment)

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 8

How to keep going?

What next?

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 9

Google P0 will do
the job…

Ville Hyvönen

What do we need?

• More time, more money!
• Our customers will sure love that one…

• More people!
• We are recruiting ;)

• New ideas!
• How to be smarter?

• Better tools!
• Be more efficient

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 10

Better tools?

• Lots of progress during the last 10 years

• Plenty of amazing tools available

• IDA
• Frida
• PIN
• Clang / ASAN / libFuzzer (LLVM)
• AFL

• More and more free and open-source

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 11

What do we dream?

• Multiplatform
• Same tools on every platforms

• Flexible
• Adapt to exotic approaches or targets

• Efficient
• Don’t waste resources (as we don’t have much…)

• Robust…

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 12

Ideal tools should all be:

Reality is a…

• We need tons of things

• And we want them now!

• Big challenges ahead

• Development is hard

• Maintaining tools even worse

• Long and tough road…

• …and time is money

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 13

Who are we?

• French cyber-security company
• ~50 employees

• Creating products
• Software protection
• Content analysis

• Providing high-end services
• Vulnerability research
• Reverse engineering
• Software and hardware security

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 14

R&D

• Small private R&D lab
• Self-financed

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 15

• Many research fields
• Reverse engineering
• Vulnerability research
• Cryptography
• Obfuscation

• Limited resources
• Who said « long and tough road »?

Do… or do not

• Service activity
• First hand feedbacks
• What is really needed?

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 16

• Product activity
• Experience in development
• Infrastructure (Continuous Integration)

• R&D at core
• Technical challenges are in company’s DNA

Unrealistic?

• Not a multi-billion dollar company…
• …but a small one with specific needs

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 17

Analysing a 20MB binary

1 million of 1MB ones
VS

Let’s try to improve things…
...at least the one that matter to us

Binary analysis

• Many (like many many) existing tools
• And dozen of frameworks

• All of them with limitations
• « only support ELF file format »

• Different customers, various needs
• « can you send us an ELF instead? »

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 18

Multiplatform? Flexibility? Efficiency?

Executable Formats

• Parsers are fundamental components
• Often overlooked

• Seen as mandatory but boring
• « Let’s hack around libelf »

• « Easy » to create something
• Hard to make it last…

• Do one thing…
• …but do it as well as you can

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 19

LIEF

• Cross platform library
• Parse (and abstract)

• ELF, PE, MachO, DEX, OAT, ART

• Modify
• some parts of these formats

• User-friendly
• Powerful C/C++/Python APIs

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 20

Library to Instrument Executable Formats
Give it a try! https://lief.quarkslab.com/

One ring

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 21

Sales Pitch

• Flexible
• Just a (nice) library
• Abstractions (common APIs for all formats)

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 22

• Robust (we do our best…)

• Clean build system (cmake)

• Continuous Integration
• Fuzzing (integrated in CI)

• Efficient
• Core implemented in C++
• pybind11 Python bindings

DBI

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 23

● Observe any state of a program…
○ …anytime during runtime

● Automate the data collection and processing

“Transformation of a program into its own
measurement tool”

Use Cases

• Finding memory bugs
• Allocations / deallocations
• Accesses

• Fuzzing
• Code coverage
• Symbolic representation of code

• Recording execution traces
• “Timeless” debugging
• Software side-channel attacks against crypto

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 24

Existing Frameworks

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 25

QBDI

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 26

QuarkslaB Dynamic binary Instrumentation

● Open-source

● Cross-platform

○ macOS, Windows, Linux, Android and iOS

● Cross-architecture

○ x86_64, ARM (more to come)

● Modular design (Unix philosophy)

Give it a try! https://qbdi.quarkslab.com/

Modularity

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 27

● Only provides what is essential

● Don’t force users to do thing in your way

● Easy integration everywhere

Integration

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 28

Fuzzing

• Fuzz testing software
• Injects randomized or mutated inputs
• Provides a way to find bugs

• Completely automated
• Input generation
• Software execution
• Crash (pre)analysis (or triage)

• « Fire and forget »
• Nice, we lack ressources…

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 29

AFL

• State-of-the-art fuzzer
• A reference in industry
• Impressive trophies (openssl, openssh, …)

• Open-source

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 30

© Michał Zalewski

Code Path

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 31

(not so Huge) Code Path

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 32

Smart Fuzzer

• Hybrid approach
• Various brute force strategies (input mutation)
• Genetic algorithm (input selection)

• Focus on inputs that produced new paths
• Maximise code coverage (better results)
• Minimise search space (less time)

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 33

aims at better efficiency

AFL Limitations

• Pros:
• Fast (scale for thousand executions per second)
• Efficient (find bugs in real-world applications)

• Cons:
• Portability issues
• Targets sources are required

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 34

Bad news: we rarely have sources (weird isn’t it?)…

AFL/QBDI

• Targets closed source binaries

• Allows runtime optimizations (space reduction)

• Reverse engineering needed (no sources)

• Mandatory (but often minimal) when targeting internals

JD-HITBSECCONF 2018 - Vulnerability research: what it takes to keep going 35

AFL with QBDI as the instrumentation engine

Best Friends

• Improved along with QBDI
• Better performances (raw speed)
• On-the-fly optimizations (code coverage)
• Memory error detection (accuracy)
• ...

• and LIEF
• Transform a binary in a library
• Statically inject your fuzzer
• Add symbols for internal functions
• ...

36

Sales Pitch

• Easy to use C / C++ APIs
• With proper documentation
• Yes, it matters...
• ...even if used internally by a few peoples

• Modular architecture
• Various libraries (core, forkserver, loader)
• Not drowned in a fork of AFL

• Robust build system
• Regression tests

• A multiplatform custom memory allocator…
• Seriously it’s painful, boring, but mandatory

37

“Demo”

38For more, enjoy Gwaby’s talk: https://www.whinysoot.com/slides/AFL_QBDI_KSE_On_a_Boat.pdf

https://www.whinysoot.com/slides/AFL_QBDI_KSE_On_a_Boat.pdf

Symbolic Execution

• Analyzes software without running it
• Uses symbolic values instead of inputs
• Represents computations as expressions

39

Constraints Solving

• Taking a path or not depends on conditions
• Conditions create path constraints
• Symbolic expressions can represent constraints
• Constraints can be solved symbolically

• SAT/SMT solvers (like Z3)

40

Triton

• Cross-platform
• macOS, Windows, Linux

• x86 and x86-64
• ARM / ARM64 in the pipeline

• Modular and easy to integrate
• LIEF
• IDA
• QBDI

• Python and C++ API
41

Dynamic Symbolic Execution Library
Give it a try! https://triton.quarkslab.com/

Smarter Fuzzer

• New kind of hybrid approach
• Discover paths with AFL/QBDI
• Use symbolic execution when stuck (solve hard

to guess conditions)

42

• Inspired by Shellphish’s Driller (NDSS 2016)
• DARPA's Cyber Grand Challenge
• Simplified environment and constraints

To the moon

• Guided fuzzers are fast but not (that) smart
• Symbolic execution is smart but not fast

43

1. Find the good ratio between smart and fast
2. Scale on real world programs

Automation

• Fuzzing is automating the vulnerability research

• Good, very good (resources?)

• But who is automating the fuzzer?

• Reduce the setup and post processing times

• Avoid repetitive and boring tasks

• Focus only on what really matter

• Infrastructure needed

44

Infrastructure

• Good news:

• Many existing bricks (Vagrant, Docker, …)

• Bad news:

• Very specific needs (heterogeneous environments,

isolation, ...)

• Tons of bricks missing (orchestration, triage, ...)

• We are not sysadmin :(

45

TIGRE

• Manage resources
• Physical devices
• VMs

• Configure network
• Autodiscovery
• Isolation

• Distribute jobs
• Use resources carefully
• Handle monitoring and reports

46

Terrible Interface de Gestion de REssources
Awful Resource Management Interface ™

Architecture

47

Architecture

48

Dead inside

• Infrastructure automation is hardcore
• Far from our core competences
• Require very specific skill set

49

• All our goals are yet to be achieved
• Robust
• Scalable
• Efficient
• KISS 😂
• Easy to use
• ...

So?

• Things seem to converge
• Pieces can finally be assembled…
• ...and are working well together

• Amazing trip
• Took us ~4 years…
• ...but totally worth it

• Still far from the destination
• but does it really matter?

50

Lessons Learned

• Vulnerability research can’t be isolated

• even if it always come with some secrecy

• So much to learn from others

• Researchers

• Developers

• Sysadmins

51

No magic

• Security researchers are not magicians
• can’t do everything by themself

• Work smarter, not harder
• No pride in losing hours due to poor tooling...
• ...yes, even if it worked
• ...yes, even if it’s impressive

• Collaboration is key
• Especially interdisciplinary

52

Developers!

• Development is hard

• Full time job for ~12 millions people

• To create advanced tools

• you need specialists, experts…

• ...who are rarely professional developers

• So much to learn from them

• Code, process, infrastructures, …

53

“They don’t care about security”

Community

• We strongly believe in FOSS
• Permissive software licence
• Contributors are always welcome

• Collaboration > Competition

• Community is essential
• So much challenges left to overcome
• Be nice to each others!

54

Can’t stay Alone in the Dark

