
> Singi@theori
> Changhyeon-Moon

H(ack)DMI
#pwning_hdmi
#for_fun_&&_profit



#LetMeIntroduceMySelf #

› Changhyeon-Moon
› KITRI BoB 7th Mentee
› singiHAjin @ BoB

› Singi (Jeonghoon-Shin)
› Researcher @ Theori
› Mentor @ BoB

Intro. 

2



#LetMeIntroduceMySelf #

Team singiHAjin @ BoB
* 2 Mentors
› Jeonghoon-Shin @ Theori
› Hongjin-Kim @ LG CNS

* 1 PL
› Sanhwi-Yang

* 5 Mentees
› Changhyeon-Moon (V)
› Hyejin-Jeong (V)
› Hyewon-Jo (V)
› Sooyeon-Jo (C)
› YangU-Kim (C)

3



#IAMSTERDAM #

Actually.. I was in Amsterdam last month

4



I will talk..
› Background
› Protocol detail
› Make fuzzer
› Fuzzing result
› Another fuzzer (!)
› Future works

#Agenda #

5



Background

6



#Background #

HDMI(High Definition Multimedia Interface)
Interface for sending high-definition video and audio signal from multimedia device to display device

› Devices what connected with 
HDMI can control each other

› Without ethernet cable, 
ethernet communication is 
possible

› Without audio cable, Upstream 
audio data to surround audio 
system

› etc..

Features Types

19 pins (Type A)

Type B,C,D,E

Pin mapsnormal type

1~12pins Video/Audio

13 pin Control

14 Utility

15,16 i2c

17,18 (+),(-)

19 Plug detect

7



#Background #

Do you think you can hack into HDMI?

What?? Is that possible?

What about 
developers..?

Well.. I don’t think so

Me Normal people

8



#Background #

Previous Research

Memory Corruption in Linux Kernel

9



# #

Previous Research
› Black Hat Europe 2012 - Andy Davis

› Hacking Displays Made Interesting

› 44CON 2012 - Andy Davis

› What the HEC? Security implications of HDMI Ethernet Channel and other related 
protocols

› Defcon23 (2015) - Joshua Smith

› High-Def Fuzzing: Exploring Vulnerabilities in HDMI-CEC

10



Protocol Detail

11



#Protocol #

Overview (spec is good reference)

HDMI
Transmitter

HDMI
Receiver

TMDS 0

TMDS 1

TMDS 2

Video

Audio

Control/
Status

TMDS Clock Channel

Video

Audio

Control/
Status

Source Device Sink Device

Display Data Channel (DDC)
EDID
rom

CEC

HEAC

detect

CEC

HEAC

High/Low

# TMDS
› Carry video and audio data

# CEC
› Provides high-level control 

functions between 
audiovisual products

# DDC
› HDMI source to determine

the capabilities and
characteristics of the Sink

# HEAC (HEC + ARC)
› Ethernet + Audio return 

channel

# Hot Plug Detect
› Plug connect detect

12



#Protocol #

1~12pins TMDS

13 pin CEC

14 pin Utility(HEAC)

15,16 pin DDC

17,18 pin (+),(-)

19 pin
HPD

(Hot Plug detect)

Overview_Pin map

port side

13



#Protocol #

CEC(Consumer Electronics Control)

TV HDMIHDMI

HDMI

PHONE

HOME THEATER

STB

I can control all of them
with only one remote controller!

14



#Protocol #

CEC
› CEC provides a number of features designed to enhance the functionality and 

interoperability of devices within an HDMI system.

AOE E-Link Hitachi HDMI-CEC LG SimpLink
Runco 

International
RuncoLink

Loewe
Digital Link /

Digital Link Plus
Mitsubishi

NetCommand
for HDMI

Onkyo RIHD Samsumg Anynet+

Panasonic
VIERA Link /

HDAVI Control 
/ EZ-Synz

Philips EasyLink Pioneer Kuro Link Sharp Aquos Link

sony
BRAVIA Link /
BRAVIA Sync

Toshiba
Regza Link 
/ CE-Link

* CEC Brand Names * PulseEight

15



#Protocol #

CEC
› All CEC devices have both a physical and logical address, whereas non-CEC devices 

only have a physical address.

* Physical Address
› 4 digits long (n.n.n.n)
› 0.0.0.0 ~ F.F.F.F
› 5-device-hierarchy

TV
0.0.0.0

GAME CONSOLE
1.0.0.0

AMPLIFIER
2.0.0.0

DVD
2.1.0.0

STB
2.2.0.0

PVR
2.2.1.0

16



#Protocol #

CEC
› All CEC devices have both a physical and logical address, whereas non-CEC devices 

only have a physical address.

* Logical Address
› Defines a device type
› 0~15
› It represents the type
› Allocated by polling message

Address Type

0 TV

1,2,9 Recording Device

3,6,7,10 Tuner

4,8,11 Playback Device

5 Audio System

12,13 Reserved

14 Specific Use

15
Unregistered (as Initiator address)
Broadcast (as Destination address)

17



#Protocol #

CEC Message

Start bit Header Block
Data Block1

(Opcode)
Data Block2
(Operand)

… Data BlockN

* CEC Frame

Start bit : No value, unique timing
Header Block : Source, Destination Address
Data Block1 : Opcode, optional
Data Block2~N : Operand, optional, depend on opcode
* all block size is 10 bits
* maximum message size is 160 bits (10 blocks include header)

18



#Protocol #

CEC Message

7 6 5 4 3 2 1 0 EOM ACK

* Block detail

Information bits

› For header block, the information bits indicate initiator(4) and destination(4) address
› For data blocks, the information bits indicate data or opcode, dependent on context
› EOM : ‘0’ (one or more data blocks follow), ‘1’ (the message is complete)
› ACK : acknowledge the data or Header Block

19



#Protocol #

DDC(Display Data Channel)
› DDC is used by the HDMI Source to read Sink’s E-EDID in order to discover the Sink’s 

configuration and/or capabilities.

› It is used not only in HDMI but also in other display interfaces like DVI

› It is transmitted by serial communication called I2C

HDMI SINK
(TV)

HDMI SOURCE
(COMPUTER)

E-EDID

Source Device

Sink Device

20



#Protocol #

DDC
* EDID(Extended Display Identification Data)

› Standardized data to know Sink’s configuration and/or capabilities

› just 128byte

* E-EDID(Enhanced-EDID)

› Data with additional extended data to transmit more information as the display's 
functionality increases.

› more than 128byte

› E-EDID = EDID + Extension Data (CEA861-D) + (optional)

21



#Protocol #

DDC

0-7 Header

… …

21 Horizontal Size(cm)

22 Vertical Size(cm)

23 Display Gamma

25-34 Color Characteristics

… …

126 Extension Flag

127 Checksum

0 Always “2”

1 Revision number

2
Pointer to detailed timing descriptors 

“d”

3
Number of detailed timing descriptor

s “n” (lower 4bits)

4 to (d-1) CEA data block collection

d to (d+18n-1) Detailed Timing Descriptor

(d+18n) to 126 “0” padding

127 Checksum

EDID CEA861-D

22



#Protocol #

DDC
* I2C

› I2C is a serial computer bus invented in 1982 by Philips Semiconductor(now NXP 
Semiconductors).

› It is widely used for attaching lower-speed peripheral ICs to processors and 
microcontrollers in short-distance, intra-board communication.

› I2C uses only two bidirectional open collector lines, SDA and SCL, pulled up with 
resistors. Typical voltages used are +5V or +3.3V, although systems with other 
voltages are permitted.

› There’s master and slave mode

23



#Protocol #

DDC
* Handshack

HDMI SINK
(TV)

+5V

HPD High

EDID request

EDID

Source Device

Sink Device

24



#Protocol #

ARC(Audio Return Channel)

TV
STB

HDMIHDMI

HDMI-ARC

Video

Audio

Upstream
Audio

› Only audio is extracted from the data received by the TV 
and send to the ARC.

› Benefit is control all of them only one remote controller

25



#Protocol #

ARC

› In order to use the ARC feature, it is necessary to discover and control the 
capabilities of the devices in the respective paths, using CEC

ARC
Tx

(TV)

ARC
Rx

(Audio 
System)

<Initiate ARC>

<Report ARC Initiated>

* Initiation or termination from ARC Rx device

<Terminate ARC>

<Report ARC terminated>

if device does not 
support ARC, the 

device 
sends a <Feature 
Abort> message

no related 
message within 

the required time, 
Rx device assumes 
that the Followers 
does not support 

ARC

26



#Protocol #

ARC

ARC
Tx

(TV)

ARC
Rx

(Audio 
System)

<Initiate ARC>

<Report ARC Initiated>

* Initiation or termination from ARC Tx device

<Terminate ARC>

<Report ARC terminated>

<Request ARC initiation>

<Request ARC termination>

› In order to use the ARC feature, it is necessary to discover and control the 
capabilities of the devices in the respective paths, using CEC

27



#Protocol #

ARC

› When using the ARC, TV wants to find which audio formats are supported by 
Amplifier, using CEC

ARC
Tx

(TV)

ARC
Rx

(Audio 
System)

Nope!

What about AC-3 or DTS or MPEG1?

I support DTS and AC-3!

Are you support AAC format?

TV sends AC-3 or DTS audio 
stream via Audio Return Channel

* Example of find which audio formats are supported

28



Make Fuzzer

29



#Let’sMAKEFUZZER #

CEC_Fuzzer

* ingredient : PySerial, USB-CEC Adapter(Pulse-Eight), HDMI Cable

› PySerial : python module for serial communication
› USB-CEC Adapter : developed by Pulse-Eight for using CEC by PC

* LibCEC
› USB-CEC Adapter communication library
› https://github.com/Pulse-Eight/libcec
› supported not only USB-CEC Adapter but also Raspberry pi
› good for using or testing CEC

30



#Let’sMAKEFUZZER #

CEC_Fuzzer

› The P8 adapter has it’s own message form
› One block is represented by 4bytes

MSG_START
(\xff)

MSG_CODE
(adapter own code)

MSG_VALUE
(information bits)

MSG_END
(\xfe)

Information bits EOM ACK

4bytes

10bit

Convert!

› MSG_CODE is related control bits in the block (EOM and ACK)
› If you want to transmit 3blocks, you need 12bytes adapter message

31



#Let’sMAKEFUZZER #

CEC_Fuzzer

* Example (Turn on the TV)

msg = “\xff\x18\x10\xfe” + “\xff\x0c\x04\xfe”
Header Block(src:0,dst:0) + Data Block1(opcode \x04)

SendMessage(msg)

* Mutation
1. Iterate opcode (without \x36)
2. 14 blocks of operand
3. Message Length

* Crash found
› Turn off the power or reboot
› system log

32



#Let’sMAKEFUZZER #

CEC_Fuzzer

HDMI Port

Adapter
Connect to PC

UART for detect crash

33



#Let’sMAKEFUZZER #

DDC_Fuzzer

* ingredient : Arduino ATMega 2560, jumper, HDMI Cable, resistors

› Resistors are 4.7 (It’s normal for 5V voltage)
› 15pin – SCL, 16pin – SDA
› 17pin – Ground, 18pin – 5V
› 19pin – Digital for HPD

34



35



#Let’sMAKEFUZZER #

DDC_Fuzzer

› To fuzz through the HDMI cable, the process of connecting and disconnecting HDMI 
should be repeated

› So we repeatedly send low and high to HPD pin, giving the same effect as 
connecting and disconnecting HDMI.

36



#Let’sMAKEFUZZER #

DDC_Fuzzer

* Wire.h
› Arduino’s i2c communication library

Wire.begin(address) // initiate i2c communication to slave mode
Wire.onReceive(function) // enroll the function to call when receive data 
from master
Wire.onRequest(functoin) // enroll the functoin to call when requested 
from master
Wire.write(data) // send data to master
Wire.read() // read received data from master

37



#Let’sMAKEFUZZER #

DDC_Fuzzer

› It is necessary to modify Wire.h and twi.h

› Uses a 32 byte buffer, therefore any communication should be within 
this limit. Exceeding bytes will just be dropped.

› 32 -> 128

38



#Let’sMAKEFUZZER #

DDC_Fuzzer

1. HPD(Low) -> HPD(High) 2. Source request edid to Arduino

3. call onRequest callback method

send mutated EDID to source

6. HPD(High) -> HPD(Low)5. call onReceive callback method

print received data

4. Source send data(ACK) to Arduino

39



#Let’sMAKEFUZZER #

DDC_Fuzzer

* Mutation
› Each structure of E-EDID
› Random among structures that are likely to cause vulnerabilities.
› All random

* Crash found
› Turn off the power or reboot
› system log

40



#Let’sMAKEFUZZER #

DDC_Fuzzer

41



#Let’sMAKEFUZZER #

What about ARC?

› The ARC devices like sound-bar or home theater use lower versions of 
codecs

› But it’s quietly difficult to transmit mutated data via HDMI cable
› Fuzzing the codecs what we compile the source code in the device

HDMI Sink
ARC Tx Device

HDMI Source
(HDMI REPEATER)

ARC Rx Device

TMDS Signal

ARC

42



#FuzzingResult #

Fuzzing Result
[DDC] Denial of service : Confirmed

[CEC] Denial of service : Confirmed

[CEC] Denial of service : Confirmed

› Found 3 vulnerabilities

43



#FuzzingResult #

Fuzzing Result_CEC
› Memory leak caused by one-byte stack overflow of memcpy()

44



#FuzzingResult #

Fuzzing Result

libhdmicec.so - onTransact( )

libhdmicec_jni.so - onEventUpdate( )

=> printCecMsgBuf(v2, &v8)

V3 V3+8 V3+c V3+10

V8 V8+1

android::
Parcel::

readInt32( )

android::
Parcel::

readInt32( )

android::
Parcel::

readInt32( )

android::
Parcel::

readCString( )

8 SRC / DST MSG_LEN MSG BODY

DST Msg body

V8+Msg_len+1

45



#FuzzingResult #

Fuzzing Result_DDC
› After shutdown due to kernel panic caused by sending EDID data, 

reboot fails.

46



Another Fuzzer

47



#AnotherFuzzer #

Ubuntu Fuzzer

* Reason of making Ubuntu fuzzer
› In the case of Ubuntu, Arduino fuzzer does not work normally
› The data was not transferred normally and It causes low speed
› What about driver fuzzer?

* Environment
› OS : Ubuntu 16.04.05 LTS
› target : i915 Driver , DRM

48



#AnotherFuzzer #

Source Code Audit

› For make fuzzer, I had to know how to get an EDID in Linux
› https://github.com/torvalds/linux

stored EDID at the end of the function

49

https://github.com/torvalds/linux


#Kprobes #

Kprobes

› Kprobes enables you to dynamically break into any kernel routine and collect 
debugging and performance information non-disruptively

Call before instruction

Call after instruction

› You can control register 
value (function params)

› symbol (+offset)
› address (+offset)

?

50



#Kretprobes #

Kretprobe

› Kretprobe is one of the kinds of Kprobes
› You can hook not only function’s entry but also function’s exit
› Code is similar to Kprobes

save edid buffer’s address

get edid buffer’s address and mutate!

kallsyms

51



#what_I_gonnado!!! #

HPD ? Power On/Off ?

52

?



#Ftrace #

Ftrace

› Ftrace is an internal tracer designed to help out developers and designers of 
systems to find what is going on inside the kernel

› /sys/kernel/debug/tracing ( on Ubuntu 16.04.05 LTS )
› Tracer type is in available_tracers file and function list what tracer can tracing is in 

available_filter_functions file
› The results are saved in “trace” file in same directory

53



#Ftrace #Usage #

Ftrace

# echo drm_do_probe_ddc_edid > set_ftrace_filter
# echo function > current_tracer
# echo 1 > events/irq/irq_handler_entry/enable
# echo 1 > options/func_stack_trace
# echo 1 > tracing_on (turn off : echo 0 > tracing_on)

54



#Libdrm #

Libdrm

› Libdrm is the cross driver middleware which allows user-space applications to 
communicate with the Kernel by the means of the DRI protocol

› There’s code for call drm_mode_getconnector
› I tried to install it, but FAIL..

So, what I did was..

Defragmentation of source 
code what I need to call 
drm_mode_getconnector

55



#WhatAWeired #

HDMI SINK
(TV)

kretprobe

ioctl trigger
(repeatedly)

drm_mode_getconnector
…
intel_hdmi_detect
…
…
drm_do_probe_ddc_edidHook!

Mutation

Seed(EDID)

Fuzzer

56



#Windows #

What about Windows?

› target : igdkmd64 on Windows 10
› Kernel debugging using WinDBG

57



#Windows #

What about Windows?

› “ba” command is very useful to analysis EDID on Windows
› Found the routine about get EDID point

› There’s no hooking mechanism like Kprobes in Ubuntu (it can solve use Windbg)
› I couldn’t find the way to trigger that function
› so… it’s fail

58



#eBook #

› We published it to eBook!
› Sorry, but only Korean version

59



60



#Dream #

Future Work

› Vulnerability assessment with eARC protocol added in HDMI 2.1
› We will analyze the vulnerabilities of devices with HEC functions
› Upgrade our fuzzer
› Find vulnerabilities of HDMI on the other devices and drivers

SAVE THE WORLD!!

61



#QNA..Sorry…ㅠ_ㅠ #

About QnA…
moon2263@naver.com

62


