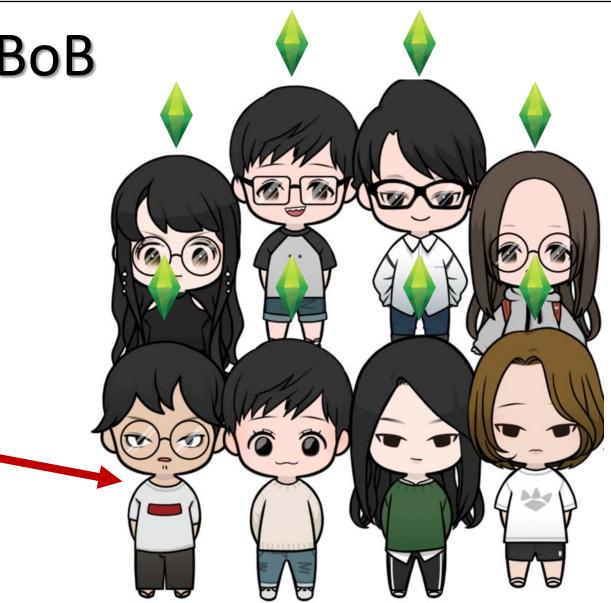
H(ack)DMI #pwning_hdmi #for_fun_&&_profit

- > Singi@theori
- > Changhyeon-Moon
- > @HITBSecConf2019Amsterdam

Intro.

- > Changhyeon-Moon
- > KITRI BoB 7th Mentee
- > singiHAjin @ BoB



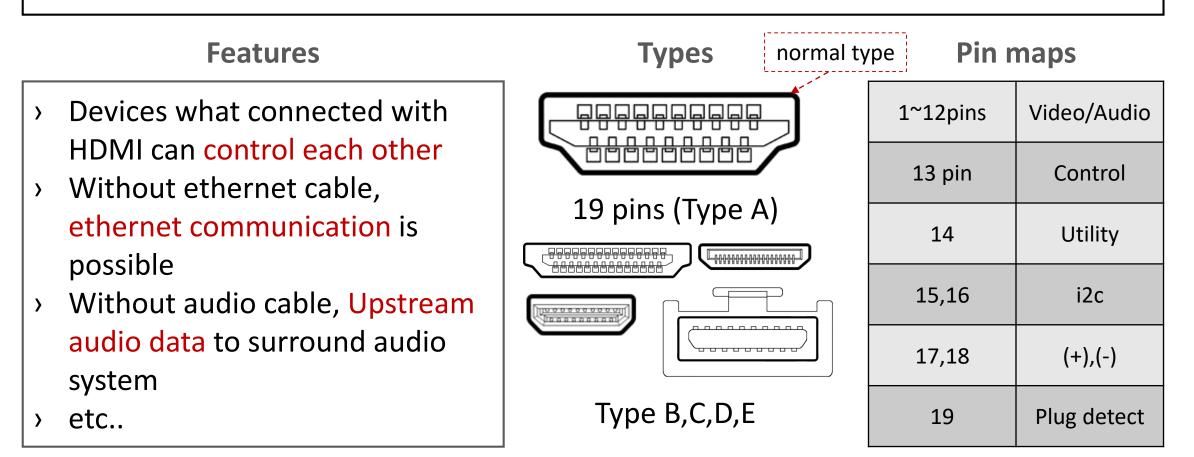
- > Singi (Jeonghoon-Shin)
- > Researcher @ Theori
- > Mentor @ BoB

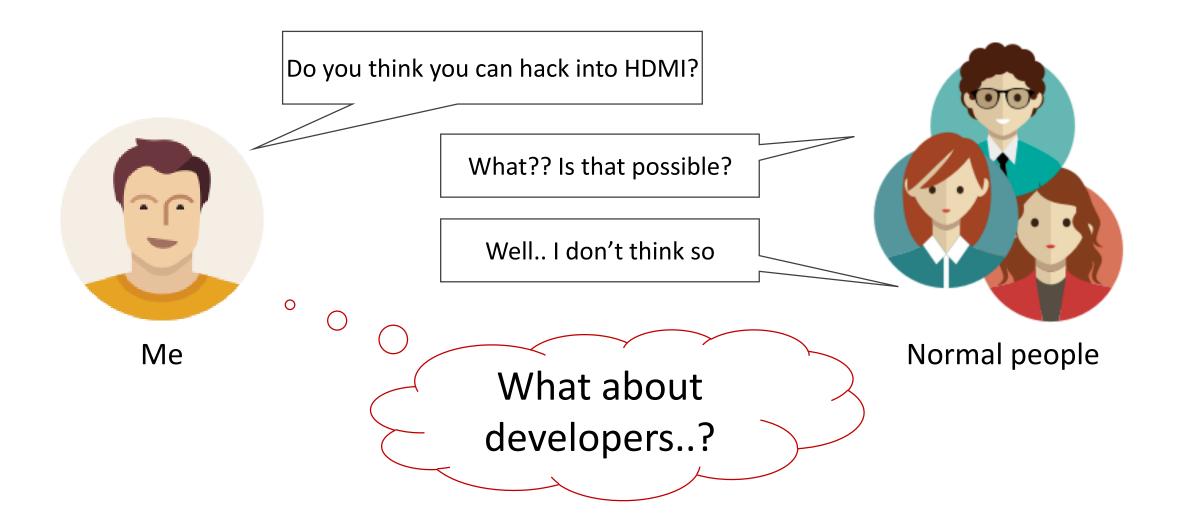
Team singiHAjin @ BoB

* 2 Mentors

- > Jeonghoon-Shin @ Theori
- > Hongjin-Kim @ LG CNS
- * 1 PL
- > Sanhwi-Yang
- * 5 Mentees
- Changhyeon-Moon (V)
- > Hyejin-Jeong (V)
- > Hyewon-Jo (V)
- > Sooyeon-Jo (C)
- YangU-Kim (C)

Actually.. I was in Amsterdam last month


I will talk..


- > Background
- > Protocol detail
- > Make fuzzer
- > Fuzzing result
- > Another fuzzer (!)
- > Future works

Background

HDMI(High Definition Multimedia Interface)

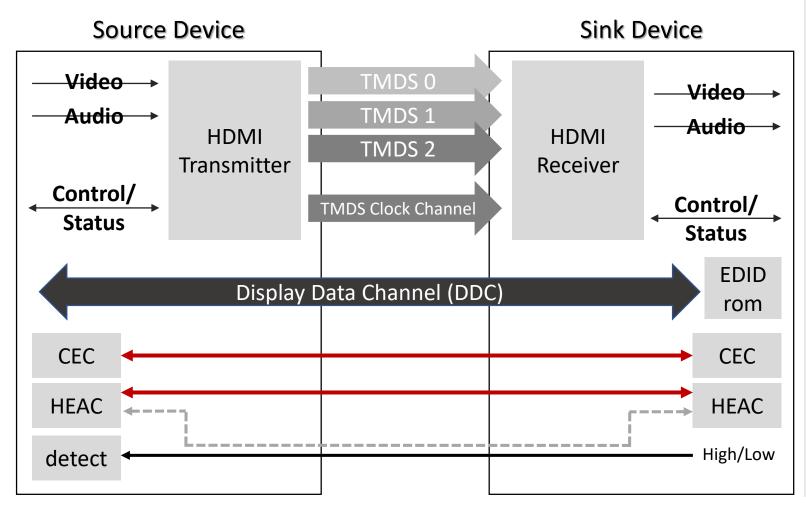
Interface for sending high-definition video and audio signal from multimedia device to display device

Previous Research

Vulnerability Deta	ils : <u>CVE-2017-968</u>	9			
In Android for MSM, corruption.	-	ils : <u>CVE-2017-9719</u>			
	In android for MSM, I frame size is out of ra	Vulnerability Details : <u>CVE-2017-9722</u>			
		In Android for MSM, Firefox OS for MSM, QRD Android, with all Android releases from CAF using the Linux kernel controlled by userspace, is too large, a buffer overflow occurs.			

Memory Corruption in Linux Kernel

Previous Research


- > Black Hat Europe 2012 Andy Davis
 - > Hacking Displays Made Interesting
- > 44CON 2012 Andy Davis
 - What the HEC? Security implications of HDMI Ethernet Channel and other related protocols

> Defcon23 (2015) - Joshua Smith

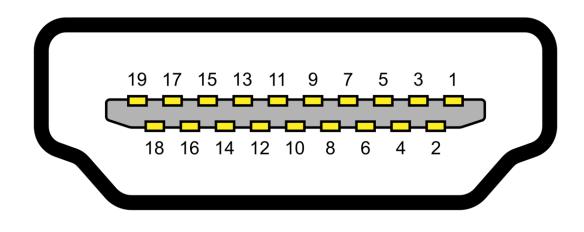
> High-Def Fuzzing: Exploring Vulnerabilities in HDMI-CEC

Protocol Detail

Overview (spec is good reference)

TMDS

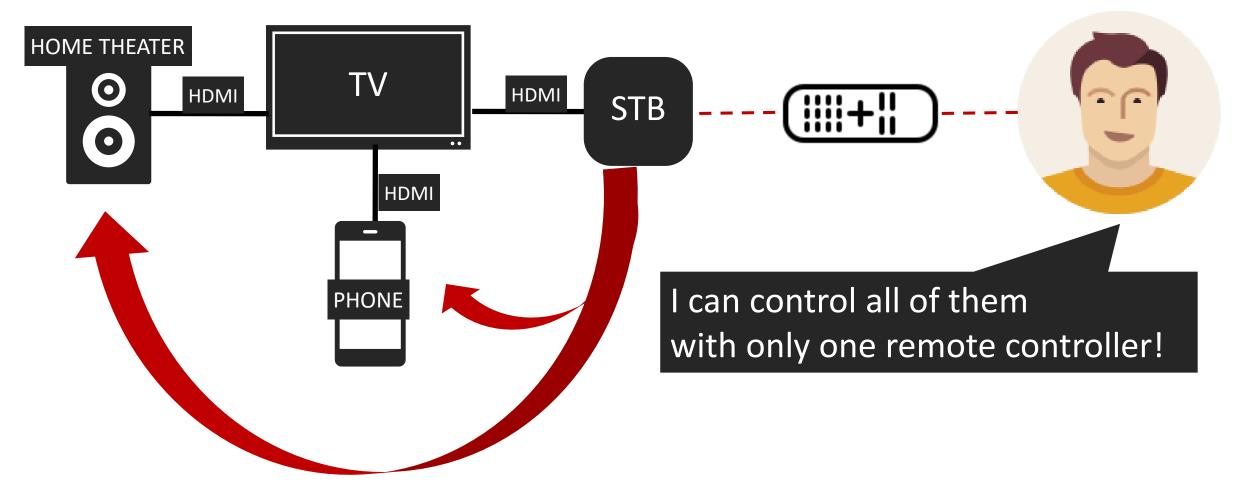
- Carry video and audio data# CEC
- Provides high-level control functions between audiovisual products


DDC

 HDMI source to determine the capabilities and characteristics of the Sink

HEAC (HEC + ARC)

- > Ethernet + Audio return channel
- # Hot Plug Detect
- > Plug connect detect

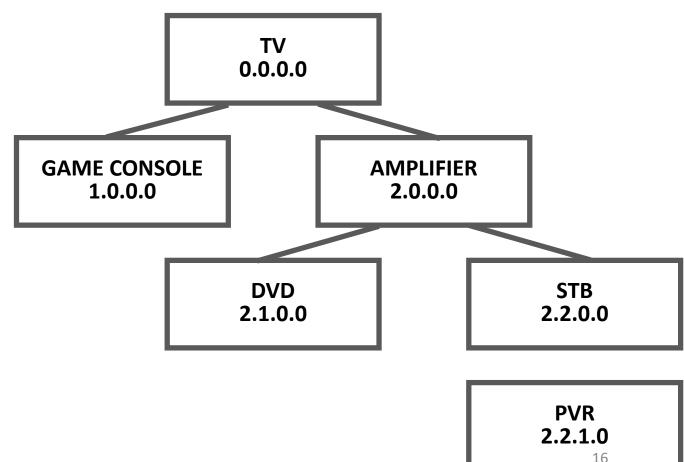

Overview_Pin map

port side

1~12pins	TMDS
13 pin	CEC
14 pin	Utility(HEAC)
15,16 pin	DDC
17,18 pin	(+),(-)
19 pin	HPD (Hot Plug detect)

CEC(Consumer Electronics Control)

CEC


- CEC provides a number of features designed to enhance the functionality and interoperability of devices within an HDMI system.
- * CEC Brand Names

* PulseEight

AOE	E-Link	Hitachi	HDMI-CEC	LG	SimpLink	Runco International	RuncoLink
Loewe	Digital Link / Digital Link Plus	Mitsubishi	NetCommand for HDMI	Onkyo	RIHD	Samsumg	Anynet+
Panasonic	VIERA Link / HDAVI Control / EZ-Synz	Philips	EasyLink	Pioneer	Kuro Link	Sharp	Aquos Link
sony	BRAVIA Link / BRAVIA Sync	Toshiba	Regza Link / CE-Link				15

CEC

- All CEC devices have both a physical and logical address, whereas non-CEC devices only have a physical address.
- * Physical Address
 - > 4 digits long (n.n.n.n)
 - > 0.0.0.0 ~ F.F.F.F
 - > 5-device-hierarchy

CEC

- All CEC devices have both a physical and logical address, whereas non-CEC devices only have a physical address.
- * Logical Address
 - > Defines a device type
 - > 0~15
 - > It represents the type
 - Allocated by polling message

Address	Туре
0	TV
1,2,9	Recording Device
3,6,7,10	Tuner
4,8,11	Playback Device
5	Audio System
12,13	Reserved
14	Specific Use
15	Unregistered (as Initiator address) Broadcast (as Destination address)

CEC Message

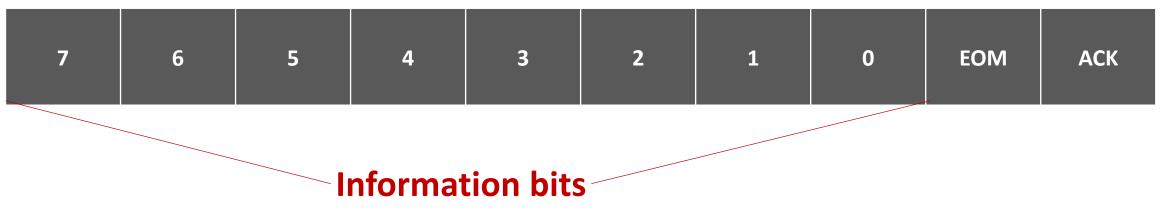
* CEC Frame

Start bit Header Blo	C Data Block1 (Opcode)	Data Block2 (Operand)	•••	Data BlockN
----------------------	---------------------------	--------------------------	-----	-------------

Start bit : No value, unique timing

Header Block : Source, Destination Address

Data Block1 : Opcode, optional

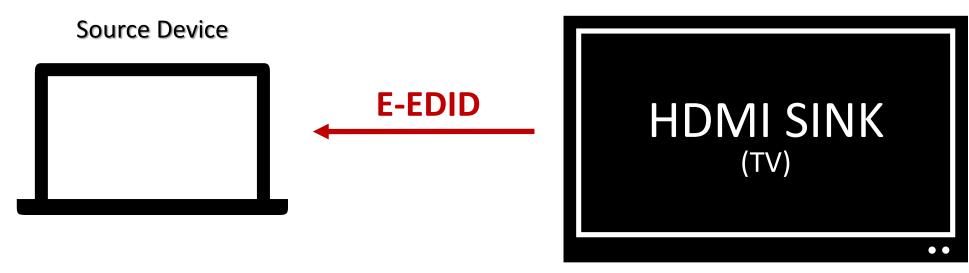

Data Block2~N : Operand, optional, depend on opcode

* all block size is **10 bits**

* maximum message size is **160 bits** (10 blocks include header)

CEC Message

* Block detail



- > For header block, the information bits indicate initiator(4) and destination(4) address
- > For data blocks, the information bits indicate **data or opcode, dependent on context**
- > EOM : '0' (one or more data blocks follow), '1' (the message is complete)
- > ACK : acknowledge the data or Header Block

DDC(Display Data Channel)

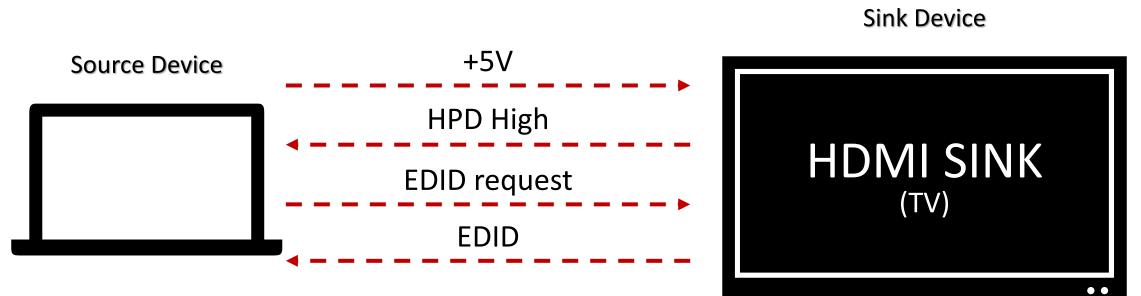
- DDC is used by the HDMI Source to read Sink's E-EDID in order to discover the Sink's configuration and/or capabilities.
- > It is used not only in HDMI but also in other display interfaces like DVI
- > It is transmitted by serial communication called I2C

Sink Device

- * EDID(Extended Display Identification Data)
- > Standardized data to know Sink's configuration and/or capabilities
- > just 128byte
- * E-EDID(Enhanced-EDID)
- Data with additional extended data to transmit more information as the display's functionality increases.
- > more than 128byte
- > E-EDID = EDID + Extension Data (CEA861-D) + (optional)

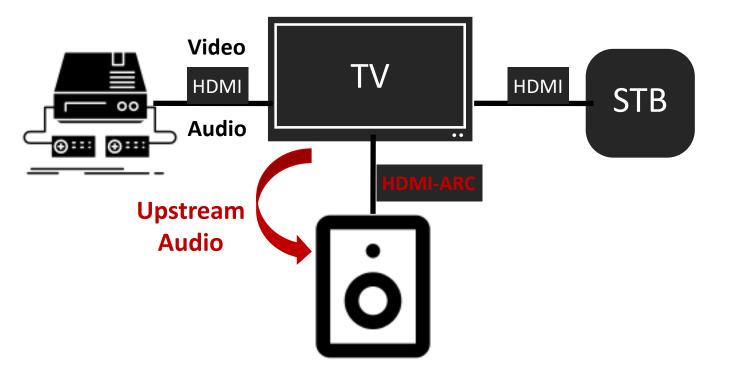
EDID

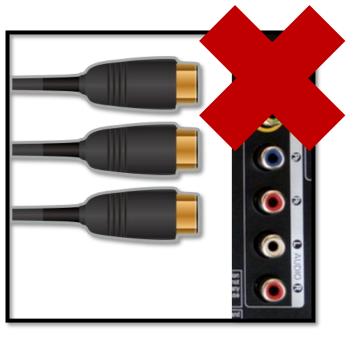
0-7	Header
21	Horizontal Size(cm)
22	Vertical Size(cm)
23	Display Gamma
25-34	Color Characteristics
126	Extension Flag
127	Checksum


CEA861-D

0	Always "2"		
1	Revision number		
2	Pointer to detailed timing descriptors "d"		
3	Number of detailed timing descriptor s "n" (lower 4bits)		
4 to (d-1)	CEA data block collection		
d to (d+18n-1)	Detailed Timing Descriptor		
(d+18n) to 126	"0" padding		
127	Checksum		

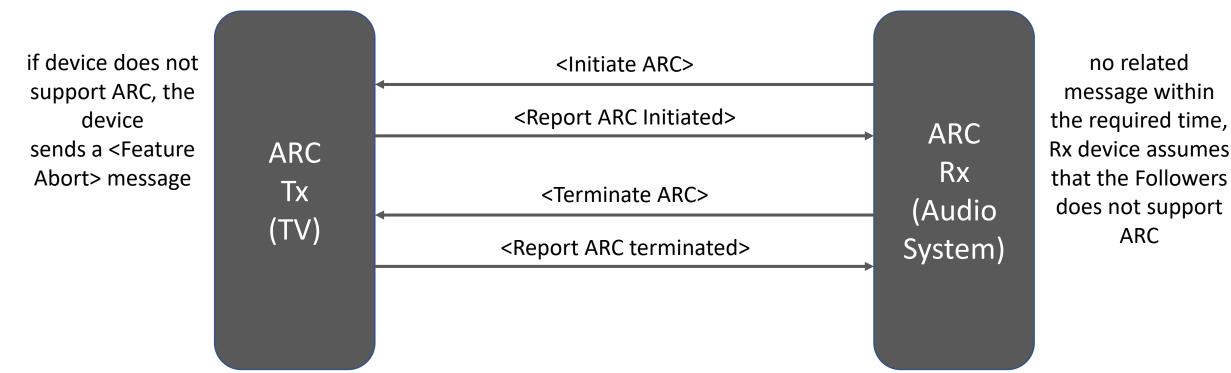
* I2C


- I2C is a serial computer bus invented in 1982 by Philips Semiconductor(now NXP Semiconductors).
- It is widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board communication.
- I2C uses only two bidirectional open collector lines, SDA and SCL, pulled up with resistors. Typical voltages used are +5V or +3.3V, although systems with other voltages are permitted.
- > There's master and slave mode


* Handshack

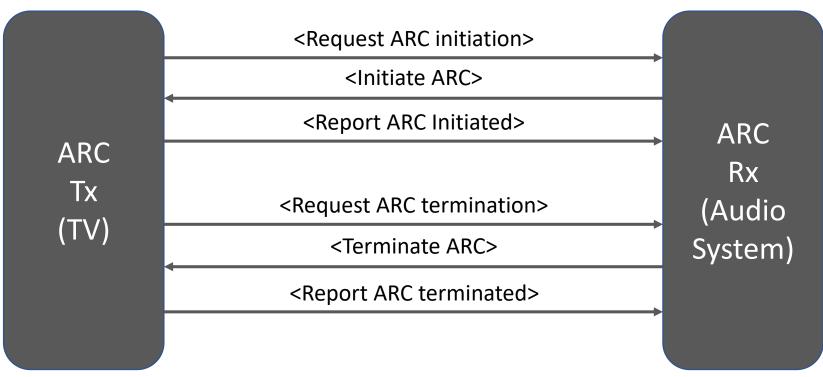
ARC(Audio Return Channel)

- Only audio is extracted from the data received by the TV and send to the ARC.
- > Benefit is control all of them only one remote controller

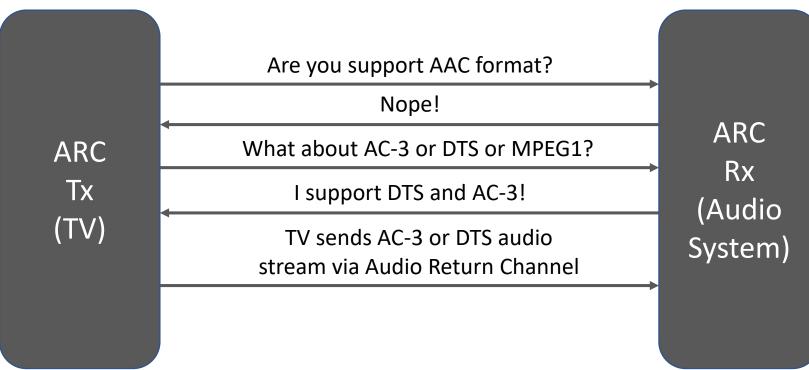


ARC

In order to use the ARC feature, it is necessary to discover and control the > capabilities of the devices in the respective paths, using CEC


* Initiation or termination from ARC Rx device

ARC


ARC

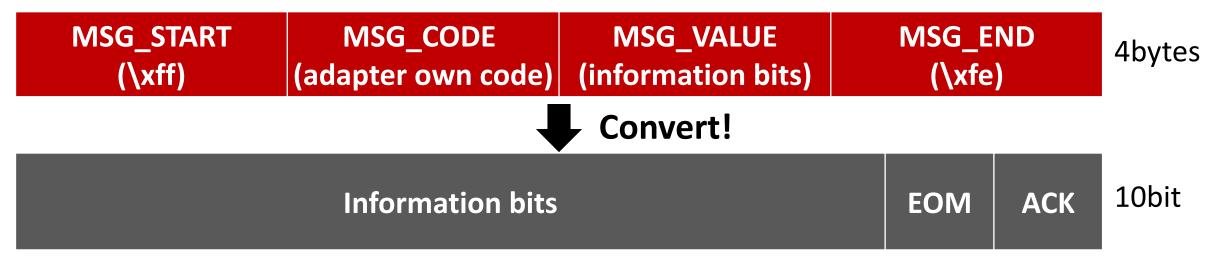
- In order to use the ARC feature, it is necessary to discover and control the capabilities of the devices in the respective paths, using CEC
 - * Initiation or termination from ARC Tx device

ARC

- When using the ARC, TV wants to find which audio formats are supported by Amplifier, using CEC
 - * Example of find which audio formats are supported

Make Fuzzer

* ingredient : PySerial, USB-CEC Adapter(Pulse-Eight), HDMI Cable


- > **PySerial** : python module for serial communication
- > **USB-CEC Adapter** : developed by Pulse-Eight for using CEC by PC

* LibCEC

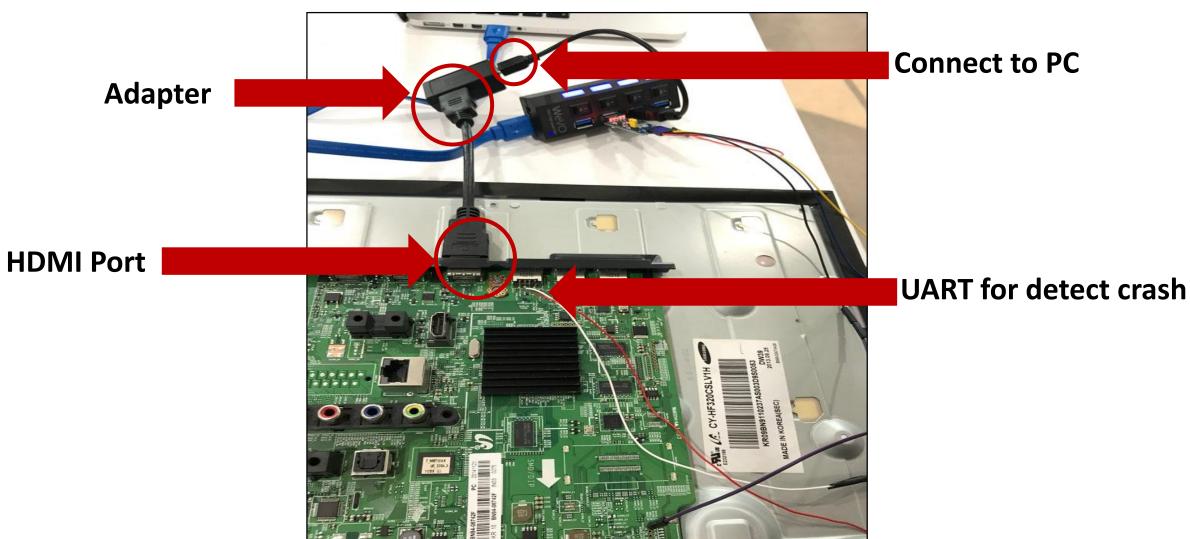
- > USB-CEC Adapter communication library
- https://github.com/Pulse-Eight/libcec
- > supported not only USB-CEC Adapter but also Raspberry pi
- good for using or testing CEC

- > The P8 adapter has it's own message form
- One block is represented by 4bytes

- > MSG_CODE is related control bits in the block (EOM and ACK)
- > If you want to transmit 3blocks, you need 12bytes adapter message

- * Example (Turn on the TV)
- msg = (xff)x18x10xfe'' + (xff)x0cx04xfe'')

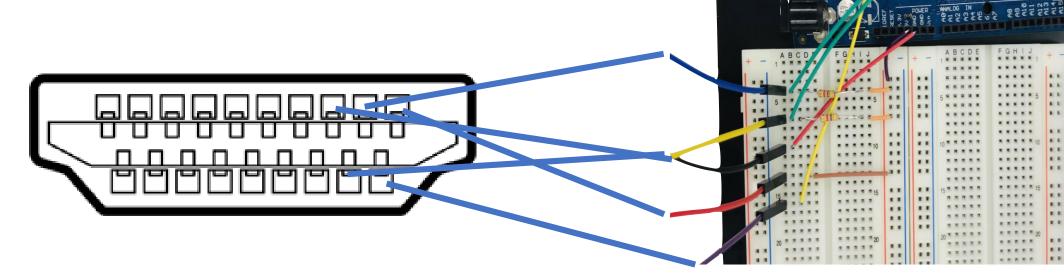
Header Block(src:0,dst:0) + Data Block1(opcode \x04)

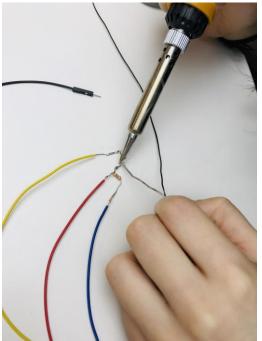

SendMessage(msg)

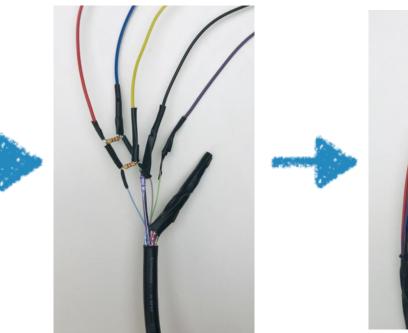
* Mutation

- 1. Iterate opcode (without x36)
- 2. 14 blocks of operand
- 3. Message Length

* Crash found


- > Turn off the power or reboot
- system log


DDC_Fuzzer


* ingredient : Arduino ATMega 2560, jumper, HDMI Cable, resistors

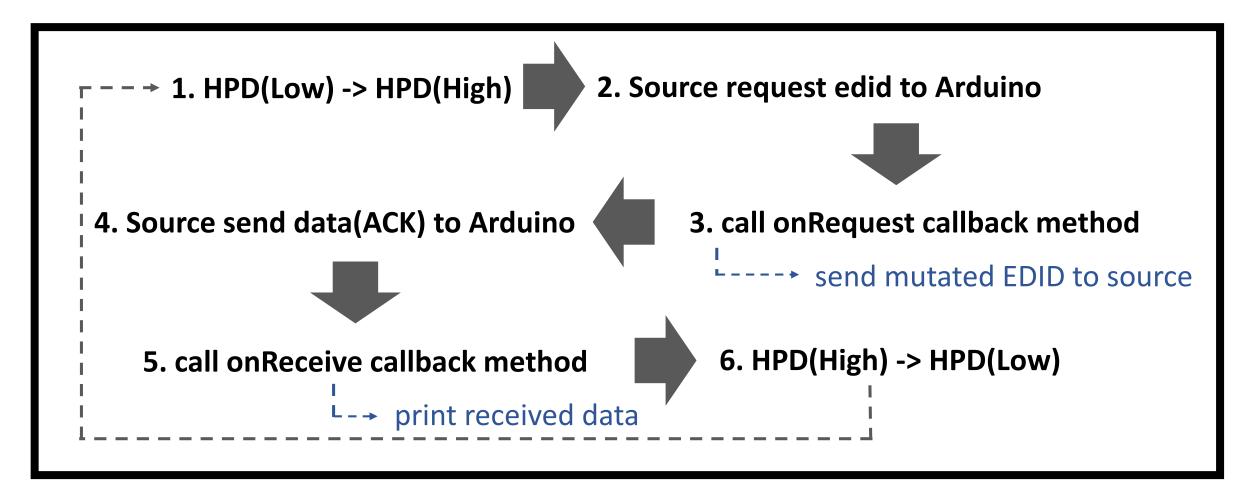
- > Resistors are 4.7 (It's normal for 5V voltage)
- > 15pin SCL, 16pin SDA
- > 17pin Ground, 18pin 5V
- > 19pin Digital for HPD

DDC_Fuzzer

- To fuzz through the HDMI cable, the process of connecting and disconnecting HDMI should be repeated
- So we repeatedly send low and high to HPD pin, giving the same effect as connecting and disconnecting HDMI.

digitalWrite(hotPlugDetectPin, LOW);
delay (10);
digitalWrite(hotPlugDetectPin, HIGH);

* Wire.h


> Arduino's i2c communication library

Wire.begin(address) // initiate i2c communication to slave mode
Wire.onReceive(function) // enroll the function to call when receive data from master
Wire.onRequest(functoin) // enroll the functoin to call when requested from master
Wire.write(data) // send data to master
Wire.read() // read received data from master

> It is necessary to modify Wire.h and twi.h

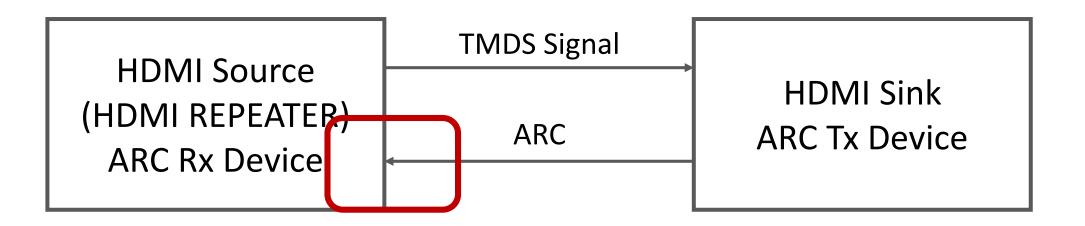
```
#ifndef TwoWire_h
#define TwoWire_h
#include <inttypes.h>
#include "Stream.h"
#define BUFFER_LENGTH 32
#define BUFFER_LENGTH 32
```

- Uses a 32 byte buffer, therefore any communication should be within this limit. Exceeding bytes will just be dropped.
- > **32 -> 128**



* Mutation

- > Each structure of E-EDID
- > Random among structures that are likely to cause vulnerabilities.
- > All random


* Crash found

- > Turn off the power or reboot
- > system log

What about ARC?

- The ARC devices like sound-bar or home theater use lower versions of codecs
- > But it's quietly difficult to transmit mutated data via HDMI cable
- > Fuzzing the codecs what we compile the source code in the device

Fuzzing Result

[DDC] Denial of service : Confirmed

Title	Process
Mibox3 Kernel Panic	Confirmed

[CEC] Denial of service : Confirmed

 Title
 Process

 possible memory leak in stack
 Confirmed

[CEC] Denial of service : Confirmed

Title	Process	This issue had already physical contact
Kernel panic caused by DoS	lgnored	

> Found 3 vulnerabilities

Fuzzing Result_CEC

Memory leak caused by one-byte stack overflow of memcpy()

```
_aeabi_memcpy((char *)&v8 + 1, v3 + 4, v3[3]);
LOBYTE(v8) = v3[2] & 0xF;
android::HdmiCecBase::printCecMsgBuf(v2, (const char *)&v8);
```

10-31 01:54:37.874 3603 3957 V HdmiCecControl: [threadLoop:] mExtendControl = 3, mDeviceType = 4, isCecControlled = 1 10-31 01:54:37.874 3603 3957 V HdmiCecService: [onEventUpdate:] cec message for system and extend 10-31 01:54:37.876 25944 26992 D HdmiCecBase: [printCecEvent:] eventType: 9 3f d7 0f 10-31 01:54:3/.8/8 3560 3560 W : debuggerd: handling request: pid=25944 uid=1000 gid=1000 tid=26992 *** *** *** *** *** *** *** *** *** *** *** *** *** 10-31 01:54:38.022 29260 29260 F DEBUG 10-31 01:54:38.022 29260 29260 F DEBUG : Build fingerprint: 'Xiaomi/TELEBEE/once:7.0/NBD92G/1971:user/release-keys' : Revision: '0' 10-31 01:54:38.022 29260 29260 F DEBUG 10-31 01:54:38.022 29260 29260 F DEBUG : ABI: 'arm' 10-31 01:54:38.022 29260 29260 F DEBUG : pid: 25944, tid: 26992, name: Binder:25944_A >>> system_server <<< 10-31 01:54:38.022 29260 29260 F DEBUG : signal 6 (SIGABRT), code -6 (SI_TKILL), fault addr ------10-31 01:54:38.028 29260 29260 F DEBUG : Abort message: 'stack corruption detected' 10-31 01:54:38.028 29260 29260 F DEBUG : r0 00000000 r1 00006970 r2 00000006 r3 00000008 10-31 01:54:38.028 29260 29260 F DEBUG : r4 d73fa978 r5 0000006 r6 d73fa920 r7 0000010c 10-31 01:54:38.028 29260 29260 F DEBUG : r8 d73fa690 r9 d92e14d0 sl f326efb9 fp 00000000 10-31 01:54:38.028 29260 29260 F DEBUG : ip 00000000 sp d73fa618 lr f305a8d7 pc f305d134 cpsr 20070010

Fuzzing Result

<pre>ser.write('\xff\x18\;</pre>	x01\xfe' + '\xff	\x0b\x14\>	(fe' + '	\x	ff\x0b\x61\x ⁻	fe':	*14 + '\>	<ff\x0c\x61\x< th=""><th>fe')</th></ff\x0c\x61\x<>	fe ')
libhdmicec.so - o	nTransact()								
	android::	andrc	android::		android::		android::		
	Parcel::	Parce	el::		Parcel::		Parcel::		
	readInt32()	readInt	t32()		readInt32()		rea	adCString()	
libhdmicec_jni.so - onEventUpdate()									
8		SRC /	SRC / DST		MSG_LEN		MSG BODY		
V3 V3+8 V3+0			+(2 V	′3+	-10 🖌			
			DST		Msg bo	ody			
		-	V8 V8		—			V8+Msg_l	en+1
			=> prin	tC	CecMsgBuf(v2	2, 8	kv8)	45	

Fuzzing Result_DDC

 After shutdown due to kernel panic caused by sending EDID data, reboot fails.

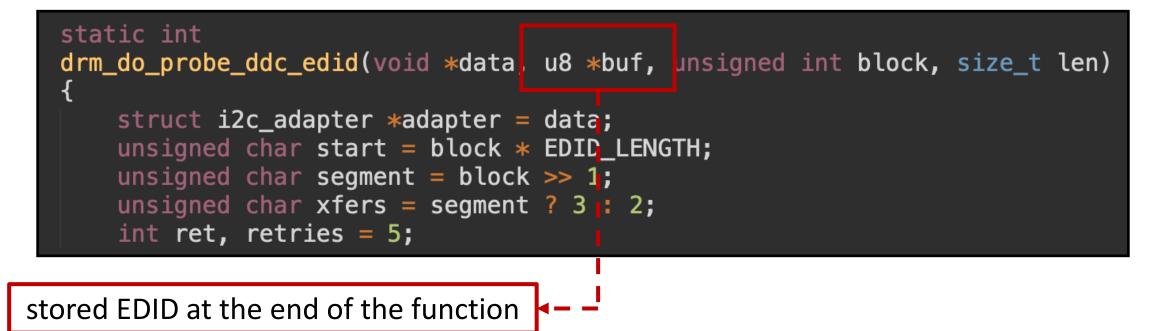
>	(20:	0xfffffc0	002176f80	:					
6	5f80	00000061	00000061	00000061	00000061	00000061	00000061	00000061	00000061
6	Sfa0	00000061	00000061	00000061	00000061	00000061	00000061	00000061	00000061
6	Sfc0	00000061	00000061	00000061	00000061	00000061	00000061	00000061	00000061

[2.247506@0]	Kernel panic - not syncing: Fatal exception in int	terrupt
[2.247506@0]	Kernel panic - not syncing: Fatal exception in int	terrupt
[2.247515@2]	CPU2: stopping	
[2.247515@2]	CPU2: stopping	
[2.247523@2]	CPU: 2 PID: 0 Comm: swapper/2 Tainted: G D	3.14.29-g927d993 #1
[2.247523@2]	CPU: 2 PID: 0 Comm: swapper/2 Tainted: G D	3.14.29-g927d993 #1
[2.247526@2]	Call trace:	_
[2.247526@2]	Call trace:	
[2.247538@2]	<pre>[<fffffc001088ea4>] dump_backtrace+0x0/0x144</fffffc001088ea4></pre>	
[2.247538@2]	<pre>[<fffffc001088ea4>] dump_backtrace+0x0/0x144</fffffc001088ea4></pre>	
[2.247542@2]	<pre>[<fffffc001089004>] show_stack+0x1c/0x28</fffffc001089004></pre>	
[2.247542@2]	<pre>[<fffffc001089004>] show_stack+0x1c/0x28</fffffc001089004></pre>	
[2.247551@2]	<pre>[<fffffc001a3486c>] dump_stack+0x74/0xb8</fffffc001a3486c></pre>	
[2.247551@2]	<pre>[<fffffc001a3486c>] dump_stack+0x74/0xb8</fffffc001a3486c></pre>	46

Another Fuzzer

Ubuntu Fuzzer

* Reason of making Ubuntu fuzzer


- > In the case of Ubuntu, Arduino fuzzer does not work normally
- > The data was not transferred normally and It causes low speed
- > What about driver fuzzer?

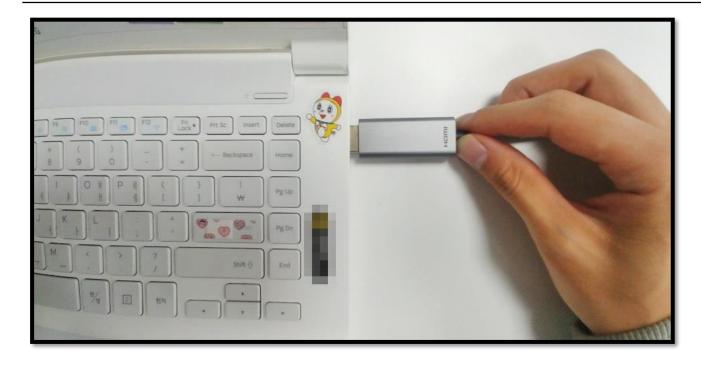
* Environment

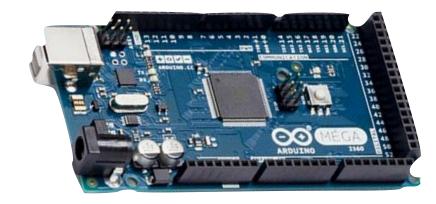
- > OS : Ubuntu 16.04.05 LTS
- > target : i915 Driver , DRM

Source Code Audit

- > For make fuzzer, I had to know how to get an EDID in Linux
- <u>https://github.com/torvalds/linux</u>

 Kprobes enables you to dynamically break into any kernel routine and collect debugging and performance information non-disruptively




Kretprobe

- > Kretprobe is one of the kinds of Kprobes
- > You can hook not only function's entry but also function's exit
- > Code is similar to Kprobes

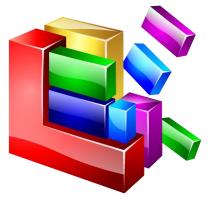
#what_I_gonnado!!! #HITBSecConf2019Amsterdam

HPD? Power On/Off?

Ftrace

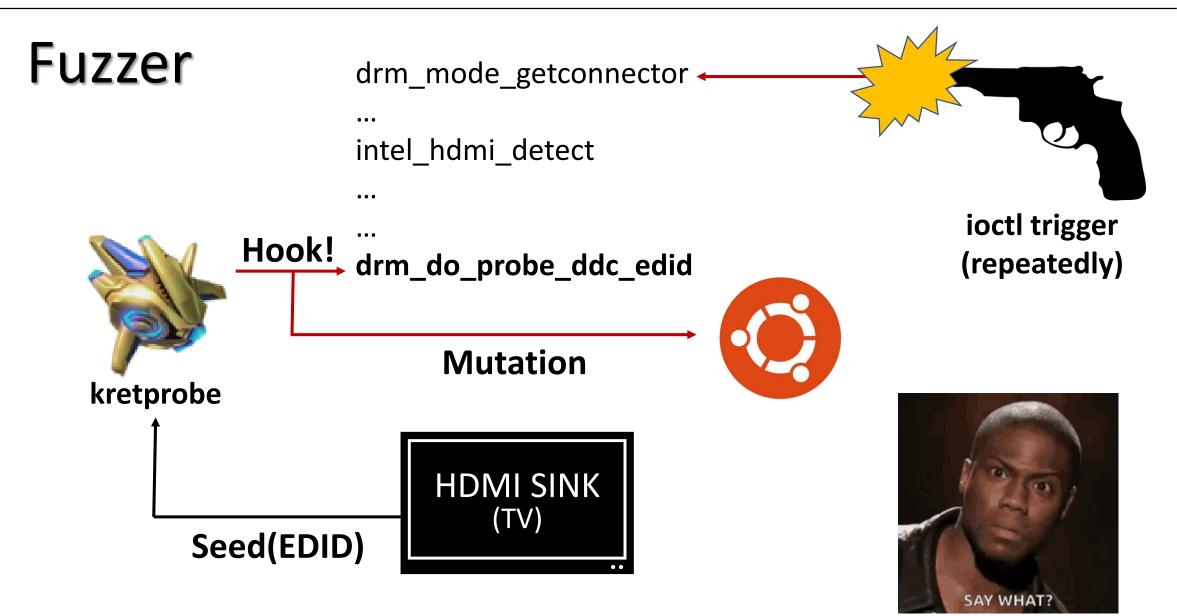
- Ftrace is an internal tracer designed to help out developers and designers of systems to find what is going on inside the kernel
- > /sys/kernel/debug/tracing (on Ubuntu 16.04.05 LTS)
- Tracer type is in available_tracers file and function list what tracer can tracing is in available_filter_functions file
- > The results are saved in "trace" file in same directory

root@scw-c1110a:/sys/kernel/debug/tracing# cat available_tracers
blk mmiotrace function_graph wakeup_dl wakeup_rt wakeup function nop

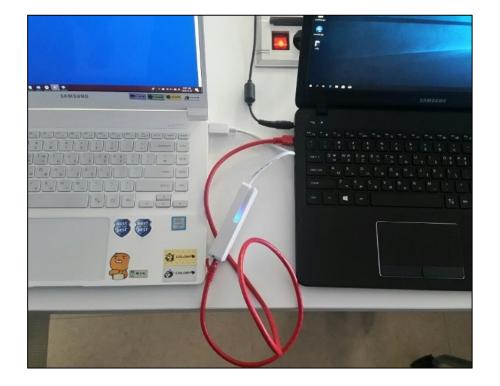

root@scw-c1110a:/sys/kernel/debug/tracing# cat available_filter_functions
run_init_process
try_to_run_init_process
do_one_initcall

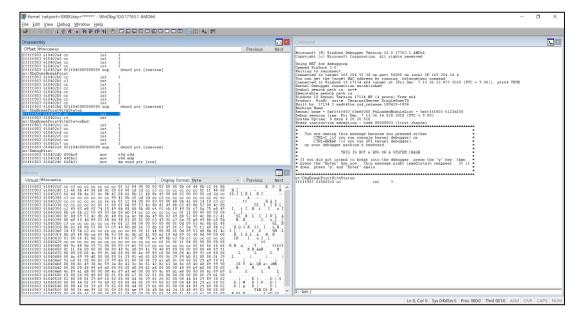
Ftrace

<pre># echo drm_do_probe_ddc_edid > set_ftr</pre>	ace_filter
# echo function > current_tracer	Xorg-1007 [003] 1208.7601€
<pre># echo 1 > events/irq/irq_handler_entry/</pre>	Xorg-1007 [003] 1208.76017
# echo 1 > options/func stack trace	=> ftrace_regs_call => drm do probe ddc edid
# echo 1 > tracing_on (turn off : echo 0 >	
	=> intel_hdmi detect
DRM_IOCTL_DEF(DRM_IOCTL_MODE_GETENC DRM_IOCTL_DEF(DRM_IOCTL_MODE_GETCON	CODER, drm_mode_getencoder, DRI
DRM_IOCTL_DEF(DRM_IOCTL_MODE_ATTACH	<pre>#MODE, drm_noop, DRM_MASTER DR => do_vfs_ioctl => do_vfs_ioctl => SyS_ioctl => do_syscall_64 => entry_SYSCALL_64_after_hwframe</pre>


Libdrm

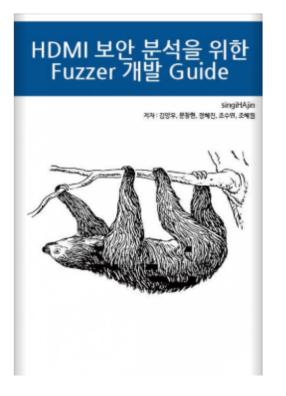
- > Libdrm is the cross driver middleware which allows user-space applications to communicate with the Kernel by the means of the DRI protocol
- > There's code for call drm_mode_getconnector
- > I tried to install it, but FAIL..
- So, what I did was..


Defragmentation of source code what I need to call drm_mode_getconnector


```
static drmModeConnectorPtr
drmModeGetConnector(int fd, uint32_t connector_id, int probe)
   struct drm mode get connector conn, counts;
   drmModeConnectorPtr r = NULL;
   struct drm mode modeinfo stack mode;
   memclear(conn);
    conn.connector id = connector id;
   if (!probe) {
       conn.count_modes = 1;
       conn.modes ptr = VOID2U64(&stack mode);
    if (drmIoctl(fd, DRM_IOCTL_MODE_GETCONNECTOR, &conn))
       return 0;
```


What about Windows?

- > target : igdkmd64 on Windows 10
- › Kernel debugging using WinDBG



What about Windows?

- > "ba" command is very useful to analysis EDID on Windows
- Found the routine about get EDID point

```
igdkmd64+0x1000+0000000000026DC42 ;
    [CALL STACK]
    00 ffffc406`623f23e0 fffff802`5615f0a6 igdkmd64!hybDriverEntry+0x204552
    01 ffffc406`623f2490 fffff802`56084bb0 igdkmd64!hybDriverEntry+0x2049b6
    02 ffffc406`623f25e0 fffff802`560aa885 igdkmd64!hybDriverEntry+0x12a4c0
    03 ffffc406`623f2630 fffff802`560abfff igdkmd64!hybDriverEntry+0x150195
```

- > There's no hooking mechanism like Kprobes in Ubuntu (it can solve use Windbg)
- > I couldn't find the way to trigger that function
- > so... it's fail

컴퓨터/IT > IT 비즈니스

HDMI 보안 분석을 위한 Fuzzer 개발 Guide

★★★★★ 5점(1명)

김양우, **문창현** 외 **3명** 저

e퍼플 출판

	전자책 정가	4,200원
구매	판매가	4,200원

- > We published it to eBook!
- > Sorry, but only Korean version

Future Work

- > Vulnerability assessment with eARC protocol added in HDMI 2.1
- > We will analyze the vulnerabilities of devices with **HEC functions**
- > Upgrade our fuzzer
- > Find vulnerabilities of HDMI on the other devices and drivers

SAVE THE WORLD!!

About QnA...

moon2263@naver.com