
Takahiro Haruyama

Threat Analysis Unit

Carbon Black



§Takahiro Haruyama (@cci_forensics)
§ Senior Threat Researcher with Carbon Black’s 

Threat Analysis Unit (TAU)
§ Reverse-engineering cyber espionage malware 

linked to PRC/Russia/DPRK
§ Past public research presentations

§ malware research (Winnti/PlugX), anti-forensic analysis, 
memory forensics

2



§Background

§ fn_fuzzy

§Evaluation

§Wrap-up

3



4



§ IDA Pro is the de facto disassembler for 
malware reverse engineers
§ save findings into the database files (IDBs)
§ import them when analyzing new malware variants 

§Which is the most similar & analyzed IDB to 
be imported?
§ A lot of IDBs
§ Some of them were analyzed a few years ago L

5



§ Impfuzzy-based binary diffing for PE-
formatted executables
§ impfuzzy for Neo4j

§Function-level binary diffing with IDA
§ one on one comparison

§ BinDiff
§ Diaphora
§ BinGrep

§ one to many comparison
§ BinDiff automation tool
§ Kam1n0

6



§Published by JPCERT [1]
§ impfuzzy

§ ssdeep value of API function 
names in PE import section 

§Neo4j visualizes malware 
clustering based on 
impfuzzy values quickly

§Not available for 
§ Mac/Linux malware
§ malware resolving API function 

addresses dynamically

§Not sure which sample is 
most-analyzed

7



§BinDiff [2]
§ widely-used IDA Pro plugin

§Diaphora [3]
§ IDAPython script supporting psuedo-code diffing
§ the development is very active

§BinGrep [4]
§ IDAPython script providing multiple candidates for 

each function

§All tools compare binaries one-on-one
8



§My wrapper script for BinDiff 4.2

.BinExport
.BinExport

.BinExport

.BinDiff
.BinDiff.BinDiff

bindiff.py

save_func_names.py

bindiff_export.idc

IDA Pro
differ64.exe

(BinDiff)

.BinDiff
.BinDiff. pickle

9



§ 99 samples 
comparison 
on my analysis 
VM
§ 795 secs 
§ 300 secs 

if .BinExport
ready

10

...



§The wrapper is not scalable for hundreds or 
thousands samples

§BinDiff is closed-source software
§ multiple functions importing error (4.3)
§ confidence/similarity swapped after saving&loading

.BinDiff (4.3 or before)
§ saved .BinDiff file loading error (5.0) <- NEW!

11

Fixed 
in 5.0

Fixed
in 5.0



§ Scalable assembly management and analysis 
platform with IDAPython plugin
§ Asm2Vec analysis engine has high accuracy (>0.8) for all 

options applied in O-LLVM

§ I tested APT10 malware obfuscated by an unknown 
obfuscating compiler [13]

12



§Kam1n0 could detect original functions of the 
highly-obfuscated one!

§But 20 samples comparison takes over 1 hour
§ Kam1n0 requires high-spec machines

68.2% similarity 
with non-obfuscated 

code

13



§Function-level binary diffing to identify the 
most similar & analyzed IDB from large ones 
then import the findings
§ get the comparison result quickly

§ e.g., less than 1 minute for hundreds or thousands 
comparison

§ not require high-spec machines
§ simpler tool to work on the analysis VM of the laptop

14



15



§ fn_fuzzy calculates two kinds of fuzzy hashes 
for each function
§ ssdeep [6] hash value of code bytes
§ Machoc [7] hash value of call flow graph

§All hashes are saved into one database file 
then used for comparison
§ On IDA, we can import function names and 

prototypes from multiple IDBs at one time
§ Structure type information will be imported automatically 

as needed

16



§de facto standard
§ originally from spam email detection algorithm, 

but not limited to text data

§speed
§ twice as fast as TLSH [8]

§other fuzzy hashes require minimum size
§ e.g., 512 bytes in sdhash [9]
§ ssdeep doesn’t define the minimum size

17



§ I’ve used the modified version of yara_fn.py
[10] to define a yara rule based on generic 
code bytes of a function
§ calculate fixup (relocation) size correctly
§ exclude not only fixup bytes but also following 

operand type values
§ o_mem, o_imm, o_displ, o_near, o_far

§ I reuse it for ssdeep hash calculation

18



{ 55 8B EC 6A ?? 68 ?? ?? ?? ?? 64 A1 ?? ?? ?? ?? 50 81 EC ?? ?? ?? ?? 
53 56 57 A1 ?? ?? ?? ?? 33 C5 50 8D 45 ?? 64 A3 ?? ?? ?? ?? 89 65 ?? 
8B 45 ?? 50 8D 8D ?? ?? ?? ?? E8 }

o_imm

fixup

o_mem

o_displ

o_near

19



§ The ssdeep score for small data sometimes drops sharply
§ fn_fuzzy calculates Machoc hash values of call flow 

graphs to correct abnormal ssdeep score

ssdeep
score: 33

20



§ Simple fuzzy hash 
mechanism based on 
the Call Flow 
Graph (CFG) of a function

§ Each basic block is 
numbered and translated 
to a string
§ NUMBER:[c,][DST, ...];

§ The concatenated string 
is hashed to produce a 32 
bits output
§ fn_fuzzy uses Murmurhash3 

[11]

21

1:2,3; 
2:; 
3:4,10; 
4:6; 
5:6; 
6:c,7; 
7:c,8; 
8:5,9; 
9:10; 
10:;

0x1014997f



§ IDAPython and the wrapper scripts
§ fn_fuzzy.py

§ IDAPython script to export/compare hashes of one binary on 
IDA

§ cli_export.py
§ python wrapper script to export hashes of multiple binaries

§Required python packages: mmh3, python-idb
[12]

§ Supported IDB version
§ generated by IDA 6.9 or later due to SHA256 API usage

§ ida_netnode.cvar.root_node.supstr(ida_nalt.RIDX_IDA_VERSI
ON)

22



23

performance 
options

similarity
threshold options



§ ssdeep hash comparison computation
§ We compare y hashes against the database containing 

x hashes = O(xy) :(
§ e.g., x = 317,576 hashes from 733 samples

§Performance options
§ compare with only analyzed functions

§ Analyzed flag info is added based on the renamed function 
name prefix/suffix in export command

§ compare with only IDBs in the specified folder
§ Specify the folder path

§ function code size comparison criteria (0-100)
§ Each hash comparison only targets hashes with similar size 

(40 = comparison with 60%-140% size hashes)

24



§ fn_fuzzy counts multiple similar functions per 
each function comparison

25

sub_1

compared
& detected
3 similiar
functions

sub_2

sub_3

fn_do_some

IDB to 
compare sub_1 

comparison:
total += 3
analyzed += 1



§ fn_fuzzy displays primary and secondary functions 
one on one
§ analyzed & the highest score function selected

§ Right-click->”Import function name and prototype”
§ If the structure type is not found, we can import the type info

26



§ fn_fuzzy detects similar functions matching with 
one of following conditions
1. function similarity score threshold (0-100) without CFG 

match (default: 50)
2. function similarity score threshold (0-100) with CFG 

match (default: 10)
3. function code size threshold evaluated by only CFG 

match (default: 0x100 bytes)

27

1

3

2

code 
bytes 
size 
> 0x100

CFG
(Machoc)
matched

ssdeep
score



§e.g., Fancy Bear XAgent
variant with a polymorphic 
deobfuscation function
§ the arithmetic logics and 

immediate values are changed 
per sample

§ but the CFG is the exactly same

§The condition may also detect 
similarities between different 
architecture samples

28



29



§733 IDBs tested on the same analysis VM
§Export

§ cli_export.py with -ear options
§ about 2 hours

§Compare
§ compare a C++ sample including 900 functions 

with the DB
§ default options and values

§ about 20-30 secs (analyzed functions only)
§ about 3 minutes (all functions)

30



§ tested Fancy Bear XAgent samples
§ sample A: AgentKernel module ID 0x3303
§ sample B: AgentKernel module ID 0x4401

§compare sample B IDB with sample A IDB
§ sample A IDB contains 69 analyzed functions

§BinDiff vs. fn_fuzzy
§ manually checked the results 

§ BinDiff: similarity > 0.7
§ fn_fuzzy: default similarity threshold options

31



item BinDiff fn_fuzzy

total detected similar functions 42 35

false positives 1 2

false negatives against functions
that the other one could detect 

7 15
32

§ BinDiff is better than fn_fuzzy
§ causes about false negatives

§ BinDiff doesn’t accept duplicated matching for secondary 
functions (4/7)
§ If one match is incorrect, the other will be incorrect too

§ fn_fuzzy
§ exclude small function whose generic code bytes < 0x10 (6/15)
§ can’t detect obfuscated functions (2/15)
§ exclude non-library function due to incorrect FLIRT sig (1/15)



§ tested APT10 ANEL samples
§ sample A: ANEL 5.2.2 rev2

§ 94 analyzed functions
§ sample B: ANEL 5.4.1

§ heavily-obfuscated with compiler-level obfuscations [13]

§BinDiff detected 3 similar functions
§ fn_fuzzy could not find at all 

§ 1 function found by changing “function code size 
comparison criteria” option from 40 to 60 

§ Some functions are not obfuscated but CFGs are 
changed due to more call instructions
§ Machoc hash calculation splits a basic block by them

33



§The similar 
functions 
from old 2 
binaries can 
be detected?

34

ShadowHammer
function [17]

PlugX Type I
function [18]

Part of Winnti
function



§All couldn’t detect the similarities
§ PlugX Type I function

§ different code bytes and CFG
§ Part of Winnti function

§ just a small part of the function

§A new algorithm may be required...

35

fn_fuzzy BinDiff Diaphora Kam1n0

PlugX Type 
I detected?

No No No No output after
18 hours Binary 
Composition Winnti

detected?
No No No



36



§ fn_fuzzy is a fast and light-weight binary 
diffing tool for large IDBs
§ BinDiff is still better in accuracy but fn_fuzzy

provides a high-speed comparison
§ The code is on GitHub [16]

§Future work
§ extract more generic code bytes

§ exclude function prologue/epilogue (e.g., is_prolog_insn)
§ IDA microcode-based fuzzy hashing

§ combine with HexRaysDeob [14][15] for defeating 
compiler-level obfuscations

37



§ [1] https://blogs.jpcert.or.jp/en/2017/03/malware-clustering-
using-impfuzzy-and-network-analysis---impfuzzy-for-neo4j-
.html

§ [2] https://www.zynamics.com/bindiff.html
§ [3] https://github.com/joxeankoret/diaphora
§ [4] https://github.com/hada2/bingrep
§ [5] https://github.com/McGill-DMaS/Kam1n0-Community
§ [6] https://ssdeep-project.github.io/ssdeep/index.html
§ [7] https://github.com/ANSSI-

FR/polichombr/blob/dev/docs/MACHOC_HASH.md
§ [8] https://github.com/trendmicro/tlsh
§ [9] http://roussev.net/sdhash/sdhash.html

38



§ [10] https://www.carbonblack.com/2019/04/05/cb-threat-
intelligence-notification-hunting-apt28-downloaders/

§ [11] https://pypi.org/project/mmh3/
§ [12] https://github.com/williballenthin/python-idb

§ [13] https://www.carbonblack.com/2019/02/25/defeating-compiler-
level-obfuscations-used-in-apt10-malware/

§ [14] https://github.com/RolfRolles/HexRaysDeob

§ [15] https://github.com/carbonblack/HexRaysDeob

§ [16] 
https://github.com/TakahiroHaruyama/ida_haru/tree/master/fn_fuzzy

§ [17] https://securelist.com/operation-shadowhammer/89992/

§ [18] https://www.blackhat.com/docs/asia-
14/materials/Haruyama/Asia-14-Haruyama-I-Know-You-Want-Me-
Unplugging-PlugX.pdf

39


