
SNEAKING
PAST
DEVICE GUARD

WHOAMI

» Philip Tsukerman – Security Researcher @ Cybereason

» @PhilipTsukerman

» No idea to whom the legs in the background belong

OUTLINE

» Intro to Device Guard

» VBA based techniques

» Non-VBA based techniques

» Other benefits of techniques

» Conclusion

INTRO TO DEVICE GUARD

DEVICE GUARD – WHAT AND WHY?

» Application whitelisting feature in Win10

» Only code defined in a policy (by cert/hash/etc.) should be
able to run

» Inhibits an attacker’s ability to run code on a compromised
machine

» Very interesting and permissive threat model:
» Attacker can already execute commands on a machine

WHAT DOES ARBITRARY CODE REALLY MEAN?

» The ability to interact with the OS freely (under privilege
constraints)

» Most direct way to achieve this is having full control of
process memory

WHAT DOES ARBITRARY CODE REALLY MEAN?

Allocate and jump
to code

Execute arbitrary
Win32API/Syscalls

WHAT DOES ARBITRARY CODE REALLY MEAN?

» Without AWL:

»Arbitrary commands == arbitrary code

»Just run your own process/library
and you’re set

WHAT DOES ARBITRARY CODE REALLY MEAN?

» With AWL:
»You have to rely only on allowed
executables/scripts

»Implementing basic offensive
functionality (cred stealing, c&c
etc.) becomes immensely hard

LOSING ARBITRARY EXECUTION IS EASY!

Fully
Controlled
Process

Privilege
Escalation

Lateral
Movement

Sandbox
Escape

Persistence

DEVICE GUARD – IN PRACTICE

» PE Files

» Only whitelisted files may be executed

» Powershell

» Constrained Language Mode (CLM) allows only very

restricted types in non-whitelisted scripts

» ActiveScript Engines

» COM object filtering on non-whitelisted scripts

DEVICE GUARD – IN PRACTICE

ADMIN BYPASSES ARE STILL DANGEROUS

» Admin users can disable Device Guard
» Requires a restart

» Throws a nasty event log

» Forces attackers into very conspicuous and detectable behavior

ADMIN BYPASSES ARE STILL DANGEROUS

» New admin bypasses may be unnoticed by defenders

» Most common scenario for Lateral Movement

» More unfixed admin bypasses = less reliability to the
feature

VBA BYPASSES

A WORD ON VBA

» You can’t expect MS to lock every piece of code in existence

» But Office is MS made, and ubiquitous

» VBA is uninstrumented by Device Guard

» Macros easily allow you to gain full process control:
» Import WINAPI functions and run shellcode

» DotNetToJScript

THE NAÏVE APPROACH

THE NAÏVE APPROACH

» Requires user interaction, and RDPing to a victim is a bit
too much

» Is also really lame

» Could we run macros without user/GUI interactions?

THE LATERAL MOVEMENT/DCOM APPROACH

» Macro functionality is exposed via DCOM

» No files, no protected mode!

» Easily available only remotely

» Requires Admin in most configs

THE LATERAL MOVEMENT/DCOM APPROACH

BUT WE WANT TO DO IT
LOCALLY!

AND UNPRIVILEGED!

WHEN DOES OFFICE FORSAKE PROTECTED MODE?

» Documents for which macros were enabled once are considered trusted

» So are documents running from trusted locations

TRUSTED LOCATIONS

» Trusted locations are managed in the registry

» All the default ones are only writable by admins

TRUSTED LOCATIONS

TRUSTED LOCATIONS

¯_(�)_/¯

PS IN CLM TO ARBITRARY CODE EXAMPLE

UGH. FINE. LET’S BLOCK
VBE7.DLL

NON-VBA BASED BYPASSES

EXCEL4.0 MACROS

» Excel actually has another, legacy macro feature, introduced
in ‘92

» Implemented in excel.exe itself

» CALL and REGISTER functions allow execution of arbitrary dll
functions

» May leave a subtle taste of vomit in your mouth after use

EXCEL4.0 MACROS

» Can be used to run x86 shellcode via a method discovered by
Stan Hegt and Pieter Ceelen of Outflank

EXCEL4.0 MACROS

RUNNING SHELLCODE VIA DCOM

Fileless version by Stan Hegt available here -
https://github.com/outflanknl/Excel4-DCOM

https://github.com/outflanknl/Excel4-DCOM

EXCEL4.0 MACROS

» The current technique can’t support x64 shellcode due to
datatype and calling convention constraints

» The fileless lateral movement version is a bit slow, as it
writes the payload byte by byte

» A fast, 64-bit supporting version and an accompanying
blogpost are available here –
https://www.cybereason.com/blog/excel4.0-macros-now-with-
twice-the-bits

https://www.cybereason.com/blog/excel4.0-macros-now-with-twice-the-bits

RUNNING SHELLCODE VIA DCOM – X64 SUPPORT

RUNNING SHELLCODE VIA TRUSTED FOLDER

» The trusted directory trick works exactly the same, without VBA

BENEFITS OF EXCEL4 MACROS

» Less likely to be killed if DG is introduced to office

» No external library to block

» Excel is installed = Device Guard Forever(?)-Day

ACTIVESCRIPT BYPASSES

ACTIVESCRIPT BYPASSES

» ActiveScript is a generic Windows scripting technology

» What’s behind vbscript/jscript

» The target of many recent bypasses (Squibly[A-Za-z]*)

THE MAIN COMPONENTS OF ACTIVESCRIPT

https://docs.microsoft.com

COMMON HOSTS AND ENGINES

» Hosts:

» W/Cscript.exe

» Scrobj.dll

» Msxml3/6.dll

» Mshtml.dll

» Engines:

» Jscript.dll

» VBScript.dll

» Jscript9.dll

DEVICE GUARD IN ACTIVESCRIPT

Engine

Wldp.dll

Host

Engine

Script

new ActiveXObject (“Wscript.Shell”);

CLSIDFromProgID (“Wscript.Shell”, &clsid)

Host->IsClassAllowed (clsid, &is_allowed)

WldpIsClassInApprovedList
(classID, hostInformation, isApproved, optionalFlags)

CoCreateInstance (clsid, *otherparams)

ACTIVESCRIPTCONSUMER

» You might know this WMI class from the most common WMI
persistence method

» Implemented as scrcons.exe

» An independent ActiveScript host by itself

» Not instrumented by Device Guard

» Only available as admin :(

ACTIVESCRIPTCONSUMER

XSLT TRANSFORMS

XSLT TRANSFORMS

» XML Transform stylesheets

» Support embedded scripting

» Implement their own uninstrumented scripting host in
msxml.dll

» Applying an arbitrary xsl transform can result in running
arbitrary code

MSACCESS XSLT TRANSFORMS

MSACCESS XSLT TRANSFORMS

Implementation available here - https://gist.github.com/Philts/1c6a41048501d5067fd0ab4b933a38c8

https://gist.github.com/Philts/1c6a41048501d5067fd0ab4b933a38c8

OUTLOOK OBJECT CREATION + XSLT

Modification of a method published here:
https://enigma0x3.net/2017/11/16/lateral-movement-using-outlooks-createobject-method-and-dotnettojscript/

THIS WAS A LIE BY OMISSION

Engine

Wldp.dll

Host

Engine

Script

new ActiveXObject (“Wscript.Shell”);

CLSIDFromProgID (“Wscript.Shell”, &clsid)

Host->IsClassAllowed (clsid, &is_allowed)

WldpIsClassInApprovedList
(classID, hostInformation, isApproved, optionalFlags)

CoCreateInstance (clsid, *otherparams)

DIFFERENT IMPLEMENTATIONS IN ACTIVESCRIPT

WHAT DOES THIS MEAN FOR US?

» Mshtml.dll is responsible for calling
IsClassAllowed for the engine

» Cscript.exe exposes IsClassAllowed to
the engine, which calls it directly

CVE-2018-8417

» Jscript9.dll was not meant to be used by w\cscript, and thus
assumes the host will call IsClassAllowed for it

» Can be run under cscript if asked very nicely

» The engine relies on the host to check the whitelist, while
the host relies on the engine

» IsClassAllowed is never called

» Object is created with no checks

A TWEETABLE POC

OK, BUT WHAT ABOUT SCRIPTLETS?!

» Scrobj.dll (the scriptlet host) works exactly the same

» Scriptlets need a ProgID, not a CLSID

» Just register your own and you’re set

OK, BUT WHAT ABOUT SCRIPTLETS?!

OK, BUT WHAT ABOUT SCRIPTLETS?!

UPDATED MACHINE? – BYOV!

UPDATED MACHINE? – BYOV!

» Jimmy Bayne (@bohops) discovered that you could still abuse
two of our recent bypasses, despite them being patched

» Borrowing a trick from driver signature enforcement bypasses

» Bad catalog hygiene means that the signature of the
vulnerable library is still valid

AN IMPERFECT SOLUTION

NOT JUST THE BYPASSES, BUT THE OVERFLOWS AND
UAFS TOO!

THE SCOPE OF THE PROBLEM

» Stale catalogs are not the exception, but rather the norm

» Your machine is vulnerable to anything that is:
» A DG bypass / Code execution vulnerability

» Vulnerable code is reachable via command line / COM hijacking /
dll hijacking

» Vulnerability was patched after the current major Windows update
(RS#) was released

» Almost all vulnerable versions of files can be found in the
WinSxS folder

» Fixing this requires either better catalog hygiene on
update, or adding every single such vulnerability to the
block list as it is released.

THIS IS BORING. NOBODY USES
DG ANYWAY!

ALTERNATIVE EXECUTION METHODS ARE ALWAYS FUN

» Some of the bypasses shown can be used as
stealthy execution techniques regardless of
Device Guard

AMSI BYPASSES

» Jscript9.dll isn’t instrumented with AMSI

» Even on an updated machine you are provided
with a free AMSI bypass!

AMSI BYPASSES

» Chakra.dll – Yes, there’s another ActiveScript JS
implementation!

» No AMSI, but no ActiveX functionality

» Wscript.CreateObject to the rescue!

STICKING TECHNIQUES TOGETHER

» Use Jscript9/Chakra.dll to create the Excel object

» Run shellcode through Excel

» No files, No AMSI, and no injections!

CONCLUSION

YOU ALREADY HAVE THE TOOLS FOR DETECTION

» Each of the bypasses described can be easily detected, if
you know what to look for

» Command lines, registry and maybe a tiny bit of WMI is all
you need

HOW I THINK THE FEATURE SHOULD
DEVELOP
» Lock down Office, as it is pretty ubiquitous

» Implement a generic solution for the catalog
hygiene issue

» A single consistent implementation for
ActiveScript

» Some kind of way to extend the whitelisting
model to other applications would be nice

PEOPLE TO FOLLOW

» James Forshaw - @tiraniddo

» Matt Graeber - @mattifestation

» Casey Smith - @subtee

» Matt Nelson - @enigma0x3

» Jimmy Bayne - @bohops

You can also reach me via @PhilipTsukerman

QUESTIONS?

