
JOP ROCKET: Bypassing DEP with
Jump-oriented Programming

Dr. Bramwell Brizendine

Austin Babcock

TRACK 1

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

▪ Dr. Bramwell Brizendine is the Director of the
VERONA Lab
▪ Vulnerability and Exploitation Research for

Offensive and Novel Attacks Lab

▪ Creator of the JOP ROCKET:
▪ http://www.joprocket.com

▪ Assistant Professor of Computer and Cyber Sciences
at Dakota State University, USA

▪ Interests: software exploitation, reverse engineering,
code-reuse attacks, malware analysis, and offensive
security

▪ Education:
▪ 2019 Ph.D in Cyber Operations
▪ 2016: M.S. in Applied Computer Science
▪ 2014: M.S. in Information Assurance

▪ Contact: Bramwell.Brizendine@dsu.edu

Dr. Bramwell Brizendine

Austin Babcock
▪ Austin Babcock is a graduate student at Dakota

State University, USA
▪ BS Cyber Operations
▪ MS Computer Science with Cyber Operations

specialization (in progress)

▪ Security Researcher at VERONA Lab @ DSU

▪ Contributor to JOP ROCKET

▪ JOP Whisperer

▪ Interests: Software exploitation, fuzzing, reverse
engineering, bug bounties

▪ Contact: austin.babcock@trojans.dsu.edu

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Agenda
• Part 1: Introduction to Jump-oriented Programming

• Introducing the JOP ROCKET

• Part 2: Manually crafting a JOP exploit to bypass DEP
• The process and tips and techniques

• Part 3: Automatic JOP chain generation
• Novel approach to generate a complete JOP chain
• DEP bypass using JOP chains generated by JOP ROCKET

• Part 4: Shellcode-less JOP
• Avoid DEP by calling desired WinAPI functions directly via JOP

• Part 5: Novel Dispatcher Gadgets
• Novel dispatcher gadget and two-gadget dispatchers – opening new possibilities

for JOP

Live Demo!

Live Demo!

Live Demo!

Part 1: Jump-Oriented
Programming Background

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• JOP dates back in the academic literature a decade
• Bletsch; Checkoway and Shacham; Erdodi; Chen, et al.

• JOP previously was confined largely to academic literature.
• Theoretical .

• Many, many questions of practical usage not addressed and unanswered

• No working full exploits
• Claims it had never been used in the wild.

• We introduced JOP ROCKET at DEF CON 27.
• Bypassed DEP in a Windows exploit with complex, full JOP chain.
• We have expanded it considerably since then.

• JOP chain generation

• Two gadget dispatcher

JOP: Historical Timeline

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Dispatcher gadget by Bletsch, et al., (2011)
• Features complete JOP chain with a dispatch table

containing functional gadgets.
• Each functional gadget is dispatched.

• Functional gadgets perform the substantive operations.
• This is the approach favored by research.

• Bring Your Own Pop Jump (BYOPJ) by
Checkoway and Shacham (2010)
• Pop X / jmp X – we can load an address into X and jump

to it.
• This can allow of a string of gadgets to be strung together.

• This creates a chain that leads from one to the next.
• Allows for RET to be loaded into X; JOP gadgets can be

used as substitute for ROP gadgets.

Different JOP Paradigms

Dispatcher
Gadget

Dispatch Table

Functional Gadget

Functional Gadget

Functional Gadget

Gadget

Gadget

Gadget

Gadget

Gadget

G
ad

ge
t

BYOPJ:
Chaotic jumps

GadgetGadget Gadget

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Untitled Variant – combination
dispatcher /functional gadgets
• Encountered in the wild in real-world

exploits, to expand the attack surface –
used with ROP.
• Used in 64-bit exploits for Free-BSD and

Sony Playstation 4.

• A dispatch table is loaded into memory
with addresses of other gadgets.

• Each gadget performs a substantive action
and also dereferences and jumps to the
next gadget!

• Gadgets of this form are rarer than
traditional JOP gadgets.

Different JOP Paradigms

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Review: Key Elements of JOP

• Dispatch table
• Each entry holds an address to a functional gadget
• Can be placed on stack or heap – any memory with RW permissions.
• Addresses for functional gadgets are separate by uniform padding.

• Dispatcher gadget
• Can be creative and flexible – key requirement is it predictably modifies an index into the

dispatch table – while at the same time dereferencing the dispatch table index.
• Typically, one gadget to move our “program counter” to the next functional gadget.

• Functional Gadgets
• Gadgets that end in jmp or call to a register containing the address of dispatcher
• Achieves control flow by jumping back to the dispatcher gadget, which modifies the

dispatch table index.
• These are where do more substantive operations.

• The Stack
• With JOP we do not use this for control flow – which is very liberating.
• We use it to set up WinAPI calls, e.g. bypass DEP with VirtualProtect and VirtualAlloc.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

ADD EBX, 0XC

JMP DWORD PTR [EBX]

Dispatch Table and Dispatcher Gadget

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

What JOP Is and What JOP Is Not

• Jump-oriented Programming is an advanced, state-of-
the-art code-reuse attack with multiple variants.
• We focus on the dispatcher gadget paradigm, allowing for full

JOP chains.

• JOP is not a replacement for ROP.
• There are less gadgets than ROP, and a full JOP chain is not

always possible.
• We do need a viable dispatcher gadget for it to work.

• Our research has expanded and provided novel dispatcher gadgets
and the two-gadget dispatcher.

• JOP can be more challenging and trickier, if doing a
manual approach.
• At the same time, it can also be simpler, if there is a valid

dispatcher and no bad byte restrictions.

JOP can be incredibly
empowering and

liberating: more inherent
flexibility than with ROP.

You make the rules!

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Jump-Oriented
Programming Reversing
Open Cyber Knowledge
Expert Tool
• Dedicated to the memory

of rocket cats who made
the ultimate sacrifice.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

JOP Gadget Discovery

• We search for the following forms:
• jmp reg
• call reg
• jmp dword ptr [reg]
• jmp dword ptr [reg + offset]
• call dword ptr [reg]
• call dword ptr [reg + offset]

• If opcodes are found, we disassemble backwards.
• We carve out chunks of disassembly, searching for

useful gadgets.
• We iterate through all possibilities from 2 to 18 bytes.

• This ensures that all unintended instructions are found.
• Both JOP and ROP and heavily reliant upon opcode-splitting. ☺

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Opcode Splitting

• With x86 ISA we lack enforced
alignment, and thus we can begin
execution anywhere.
• We enrich the attack surface with

unintended instructions.

• Any major ROP tool uses this with or
without user knowledge.
• So too does JOP ROCKET.

Opcodes Instructions

BF 89 CF FF E3 mov edi, 0xe3ffdf89;

Opcodes Instructions

89 CF FF E3 mov edi, ecx # jmp eax;Opcodes Instructions

68 55 ba 54
c3

push 0xc354ba55

Opcodes Instructions

54 push esp

c3 ret

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

JOP Gadget Classification
• ROCKET searches for FF first, and if found it checks

for 49 opcode combinations.
• If found, chunks of disassembly are carved out.
• Disassembly chunks are searched for useful operations.

• Hundreds of data structures maintain minimal
bookkeeping information, allowing gadgets to be
generated on the fly.
• No disassembly or opcodes saved.
• Useful for other searching operations.
• Allows for different things to be done with the data.
• All search results can be saved as text files according to

unique user specifications.

• Numerous classifications based on operation and
registers affected.

JOP ROCKET Usage

• To use JOP ROCKET, if we intend to scan the entire binary,
including all DLLs, the target application must be installed.
• We provide the application’s absolute path as input in a text file.
• We can scan just the .exe by itself – even not installed – but it will not be

able to discover third-party DLLs.
• System DLLs can still be found, but typically not of interest.

• Memory can be a concern with very large binaries.
• For some very large binaries, 64-bit Python will be required.
• Performance for scanning and classifying JOP gadgets has improved

drastically.
• However, for larger files, JOP chain generation can still take a while for very large

files.
• Incredibly fast for smaller files

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Specify registers of interest –
any specific ones or just all.

JOP ROCKET
Menu

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Use g to scan for selected
registers.

• Use G to scan all Jmp reg
• Use C to scan all Call reg
• Use Z to scan all Jmp / Call

JOP ROCKET
Menu

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Use s to set scope – image
executable, or include DLLs in
IAT, or DLLs in IAT and
beyond

JOP ROCKET
Menu

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Use m to scan for mitigations,
e.g. DEP, ASLR, SafeSEH, CFG

JOP ROCKET
Menu

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Use b to show or add bad
characters.

JOP ROCKET
Menu

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Use j to generate pre-built
JOP chains!

JOP ROCKET
Menu

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Use p to access print sub-
menu.

• Use P to print everything
• Not including stack pivots

JOP ROCKET
Menu

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Print Sub-menu

• Use r to select specific
registers affected.

• Use g to select specific
operations

• Use z to print selections
• Use P to select alll

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Print Results

• This is for add ebx.
• It has jmp and call
• It has ebx, bx, bh, bl, etc.

Offsets for each line

Numerous results by
operation and reg

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Part 2: The Manual
Approach

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Part 2 Contents

1. Selecting dispatch registers and the dispatcher gadget

2. An overview of JOP’s purpose in an exploit

3. Avoiding bad bytes with JOP

4. Stack pivoting with JOP

5. Writing function parameters to memory

6. Performing the function call

7. JOP NOPs

8. Demo

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Choosing Dispatch Registers

• Functional gadgets need to end in
JMPs or CALLs to this register.

• Assess the available JOP gadgets for
each register.

• Some will have more useful gadgets
available than others.

• It is possible to change registers or
load the address into multiple
registers.

• Will require additional functional
gadgets.

Dispatcher Gadget Address

Useful gadgets
with no side
effects

Gadgets are
lengthy and
more difficult
to use

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Choosing Dispatch Registers

• The only way to decide which register to use
is via the selection of the dispatcher gadget.

• This gadget needs eax to hold the dispatch table.

• It will be easier to find functional gadget
workarounds than to work with a bad
dispatcher.

• A good dispatcher may cause a few gadgets to be
inaccessible, while a bad dispatcher such as the one
to the right could invalidate any gadget that utilizes
the stack

• The dispatcher gadget can also be changed
for another midway the exploit.

• Not ideal and requires additional gadgets that may or
may not exist.

Dispatch Table Address Dispatcher Gadget

Address Gadget

0x1b174bcc add eax, 0x4; jmp dword ptr [eax];

Dispatcher Gadget

Address Gadget

0x1b473522 add ebx, 8; pop eax; pop ecx; jmp
dword ptr [ebx];

This dispatcher has too many side effects; it
should be avoided if possible.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Add and sub are straightforward
instructions that are relatively simple to
use in most cases.

• Put each functional gadget in order in the
dispatch table.

• Reverse the dispatch table’s order for sub.

Selecting a Dispatcher

Dispatcher Gadget

Address Gadget

0x1b474a22 add eax, 0x4; jmp dword ptr [eax];

Dispatch Table

Address Value Gadget

0x0018fac0 0x1b47bbcc pop ebx; jmp edx;

0x0018fac4 0x1b47bb10 add ebx, 0x100; jmp edx;

0x0018fac8 0x1b47bc38 push ebx; jmp edx

1

2

3

• Try to avoid side effects when possible.
• Any side effect that happens in the

dispatcher will occur repeatedly throughout
the exploit.

• Some may be accommodated while others
may invalidate entire registers.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Selecting a Dispatcher

Dispatcher Gadget

Address Gadget

0x1b47181f sub eax, 0x4; jmp dword ptr [eax];

Dispatch Table

Address Value Gadget

0x0018fac8 0x1b47bc38 push ebx; jmp edx

0x0018fac4 0x1b47bb10 add ebx, 0x100; jmp edx;

0x0018fac0 0x1b47bbcc pop ebx; jmp edx;

3

2

1

• Try to avoid side effects when possible.
• Any side effect that happens in the

dispatcher will occur repeatedly throughout
the exploit.

• Some may be accommodated while others
may invalidate entire registers.

• Add and sub are straightforward
instructions that are relatively simple to
use in most cases.

• Put each functional gadget in order in the
dispatch table.

• Reverse the dispatch table’s order for sub.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Keep memory space limitations in mind.
• Gadgets that modify the dispatch table’s address by

larger amounts will require more padding and increase
the table’s size.

Selecting a Dispatcher

Dispatch table for:
add edi, 8; jmp dword ptr [edi];

Dispatch table for:
add edi, 0x10; jmp dword ptr [edi];

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Execute WinAPI function calls that can
bypass DEP so shellcode can be used.

• Most commonly, VirtualProtect() or
VirtuallAlloc() will be used to make a
region of memory executable.

• When using VirtualAlloc(), another function such
as WriteProcessMemory() needs to be used to
write the shellcode to the allocated memory.

• Use gadgets to write function parameters
that contain bad bytes.

Tasks to Accomplish with JOP

Running Shellcode with JOP Shellcode-less JOP

• This method still performs WinAPI calls but
does not avoid DEP in the same way.

• The function calls themselves will perform the
desired malicious actions.

• Some function calls may return values to
be used as parameters for other functions.

• JOP must be used to set up these parameters,
as their values cannot be hardcoded or
generated programmatically in the script.

• Several function calls can be chained
together

• Example: kernel32.LoadLibrary() ->
kernel32.GetProcAddress -> msvcrt.System()

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Calling WinAPI Functions with JOP

• Before executing a function such as
VirtualProtect(), the parameters must be
set up correctly.

• While some parameters can be
included in the payload, parameters
with bad bytes can be replaced by
dummy variables which are later
overwritten.

VirtualProtect Parameters

Value in Buffer Description Desired Value

0x1818c0fa Return Address 0x1818c0fa

0x1818c0fa lpAddress 0x1818c0fa

0x70707070 dwSize (dummy) 0x00000500

0x70707070 flNewProtect (dummy) 0x00000040

0x1818c0dd lpfOldProtect 0x1818c0dd

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Xor can be used to load bad byte values into
a register.

• First, put a predictable value into a register.
• This can be used as an XOR key later.

Address Gadget

0xebb87b20 pop ebx; jmp ecx;

Address Gadget

0xebb8544 mov ebx, 0x42afe821; jmp ecx;

• Calculate the result that occurs from
XORing the key with the bad byte value.
Then, load that result into a register.

• If the desired value is 0x40, calculate 0x40 XOR
key.

• Use an xor gadget to perform the calculation and
load the final value into a register.

Address Gadget

0xeb390312 pop edx; jmp ecx;

Address Gadget

0xeb390312 xor edx, ebx; jmp ecx;

Using JOP to Avoid Bad Bytes

or

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Gadget addresses themselves can
contain bad bytes.

Using JOP to Avoid Bad Bytes

Dispatch Table

Value Gadget

0x4213a870 neg eax; jmp esi; # Load 0x0013fc20 into eax

0x4213b69a jmp eax; # Execute 1st stack pivot gadget

0x4213a2dd xor edx, edi ; jmp esi # Load 0x00131222 into edx

0x421389a0 jmp edx # Execute 2nd stack pivot gadget

Dispatcher Gadget

Address Gadget

0x4213ff90 add ebx, 0x4; jmp dword ptr [ebx]

Address Gadget

0x0013fc20 add esp, 0x40; jmp esi # Stack pivot

Address Gadget

0x00131222 add esp, 0x2b; jmp esi # Stack pivot

• These addresses cannot be included
within the dispatch table.

• Other gadgets can be used to load the
address into a register.
• Afterwards, perform a jmp to this register.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Stack Pivoting with JOP

• Stack pivots that adjust esp
forwards are usually more plentiful
and easier to use.

• JOP ROCKET can help find these types
of gadgets.

• Pop, add esp, call, etc.

Gadget

pop eax;

pop edi;

jmp edx;

Stack

Address Value

0x0018fac0 0x11111111

0x0018fac4 0x22222222

0x0018fac8 0x33333333

0x0018facc 0x44444444

ESP

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Stack Pivoting with JOP

• Backwards moving pivots tend to be
more difficult to find.

• Push instructions can move esp
backwards, but also overwrite
memory as they do so.

Address Gadget

0x43da8822 mov ebx, 0; jmp ecx

0x62ad7355 push ebx; jmp ecx;

0x62ad7355 push ebx; jmp ecx;

0x62ad7355 push ebx; jmp ecx;

Stack

Address Value

0x0018fac0 0x11111111

0x0018fac4 0x22222222

0x0018fac8 0x33333333

0x0018facc 0x44444444ESP

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Stack Pivoting with JOP

• Backwards moving pivots tend to be
more difficult to find.

• Push instructions can move esp
backwards, but also overwrite
memory as they do so.

Address Gadget

0x43da8822 mov ebx, 0; jmp ecx

0x62ad7355 push ebx; jmp ecx;

0x62ad7355 push ebx; jmp ecx;

0x62ad7355 push ebx; jmp ecx;

Stack

Address Value

0x0018fac0 0x11111111

0x0018fac4 0x22222222

0x0018fac8 0x00000000

0x0018facc 0x44444444

ESP

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Stack Pivoting with JOP

• Backwards moving pivots tend to be
more difficult to find.

• Push instructions can move esp
backwards, but also overwrite
memory as they do so.

Address Gadget

0x43da8822 mov ebx, 0; jmp ecx

0x62ad7355 push ebx; jmp ecx;

0x62ad7355 push ebx; jmp ecx;

0x62ad7355 push ebx; jmp ecx;

Stack

Address Value

0x0018fac0 0x11111111

0x0018fac4 0x00000000

0x0018fac8 0x00000000

0x0018facc 0x44444444

ESP

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Stack Pivoting with JOP

• Backwards moving pivots tend to be
more difficult to find.

• Push instructions can move esp
backwards, but also overwrite
memory as they do so.

Address Gadget

0x43da8822 mov ebx, 0; jmp ecx

0x62ad7355 push ebx; jmp ecx;

0x62ad7355 push ebx; jmp ecx;

0x62ad7355 push ebx; jmp ecx;

Stack

Address Value

0x0018fac0 0x00000000

0x0018fac4 0x00000000

0x0018fac8 0x00000000

0x0018facc 0x44444444

ESP

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Once bad byte values are loaded into a register,
they can be used to replace dummy values.

• Gadgets with the push instruction are relatively
common and will perform an overwrite.

• Occurs at esp-4, then changes esp to that address.

• Stack pivots will be useful.
VirtualProtect Parameters

Address Current Value Description

0x1818c0e0 0x1818c0fa Return Address

0x1818c0e4 0x1818c0fa lpAddress

0x1818c0e8 0x70707070 dwSize (dummy)

0x1818c0ec 0x70707070 flNewProtect (dummy)

0x1818c0f0 0x1818c0dd lpfOldProtect

Gadget

add esp, 0xc;

jmp edx;

Gadget

push eax;

jmp edx;

ESP

Gadget

xor eax, ecx;

jmp edx; Load 0x500 into eax

Overwriting Dummy Values - Push

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

VirtualProtect Parameters

Address Current Value Description

0x1818c0e0 0x1818c0fa Return Address

0x1818c0e4 0x1818c0fa lpAddress

0x1818c0e8 0x70707070 dwSize (dummy)

0x1818c0ec 0x70707070 flNewProtect (dummy)

0x1818c0f0 0x1818c0dd lpfOldProtect

Gadget

add esp, 0xc;

jmp edx;

Gadget

push eax;

jmp edx;
ESP

• Once bad byte values are loaded into a register,
they can be used to replace dummy values.

• Gadgets with the push instruction are relatively
common and will perform an overwrite.

• Occurs at esp-4, then changes esp to that address.

• Stack pivots will be useful.

Gadget

xor eax, ecx;

jmp edx; Load 0x500 into eax

Overwriting Dummy Values - Push

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

VirtualProtect Parameters

Address Current Value Description

0x1818c0e0 0x1818c0fa Return Address

0x1818c0e4 0x1818c0fa lpAddress

0x1818c0e8 0x70707070 dwSize (dummy)

0x1818c0ec 0x70707070 flNewProtect (dummy)

0x1818c0f0 0x1818c0dd lpfOldProtect

Gadget

add esp, 0xc;

jmp edx;

Gadget

push eax;

jmp edx;
ESP

Overwriting Dummy Values - Push

• Once bad byte values are loaded into a register,
they can be used to replace dummy values.

• Gadgets with the push instruction are relatively
common and will perform an overwrite.

• Occurs at esp-4, then changes esp to that address.

• Stack pivots will be useful.

Gadget

xor eax, ecx;

jmp edx; Load 0x500 into eax

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

VirtualProtect Parameters

Address Current Value Description

0x1818c0e0 0x1818c0fa Return Address

0x1818c0e4 0x1818c0fa lpAddress

0x1818c0e8 0x00000500 dwSize

0x1818c0ec 0x70707070 flNewProtect (dummy)

0x1818c0f0 0x1818c0dd lpfOldProtect

Gadget

add esp, 0xc;

jmp edx;

Gadget

push eax;

jmp edx;

Gadget

xor eax, ecx;

jmp edx;

ESP

• Once bad byte values are loaded into a register,
they can be used to replace dummy values.

• Gadgets with the push instruction are relatively
common and will perform an overwrite.

• Occurs at esp-4, then changes esp to that address.

• Stack pivots will be useful.

Load 0x500 into eax

Overwriting Dummy Values - Push

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Generalizing the Push Method

• When performing multiple push overwrites,
stack pivots in both directions will be needed.

• After each push, esp should be pivoted back to
a location where values can be popped.

• The stack values can be arranged so that this
process is simpler.

Stack

Address: Value:

0x0 Encoded Parameter 1

0x4 Encoded Parameter 2

0x8 Encoded Parameter 3

0xC Dummy Variable 1

0x10 Dummy Variable 2

0x14 Dummy Variable 3

Distance: 0xC

Distance: 0xC

Distance: 0xC

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Stack

Address: Value:

0x0 Parameter 1 value

0x4 Parameter 2 value

0x8 Parameter 3 value

0xC Dummy Variable 1

0x10 Dummy Variable 2

0x14 Dummy Variable 3

1. POP Parameter 1 off stack

2. XOR to avoid bad bytes

3. Pivot ESP to corresponding
location for PUSH

4. Overwrite
placeholder in lower
memory at ESP-4

5. Pivot ESP to next value

6. Repeat from step 1 until all
parameters are written.

• Other gadgets such as mov dword ptr can
perform overwrites.

• These are less commonly found and require
more registers to be set aside.

• Overwrite occurs at the address of the first register
using the value of the second register.

• No stack pivots required. VirtualProtect Parameters

Address Current Value Description

0x1818c0e0 0x1818c0fa Return Address

0x1818c0e4 0x1818c0fa lpAddress

0x1818c0e8 0x00000500 dwSize

0x1818c0ec 0x70707070 flNewProtect (dummy)

0x1818c0f0 0x1818c0dd lpfOldProtect

Gadget

mov dword ptr [eax], ebx

jmp edx;

Overwriting Dummy Values – Mov

Gadget

xor eax, ecx;

xor ebx, ecx;

jmp edx;

Load 0x1818c0ec into eax

Load 0x40 into ebx

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Other gadgets such as mov dword ptr can
perform overwrites.

• These are less commonly found and require
more registers to be set aside.

• Overwrite occurs at the address of the first register
using the value of the second register.

• No stack pivots required. VirtualProtect Parameters

Address Current Value Description

0x1818c0e0 0x1818c0fa Return Address

0x1818c0e4 0x1818c0fa lpAddress

0x1818c0e8 0x00000500 dwSize

0x1818c0ec 0x70707070 flNewProtect (dummy)

0x1818c0f0 0x1818c0dd lpfOldProtect

Gadget

mov dword ptr [eax], ebx

jmp edx;

Overwriting Dummy Values – Mov

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Gadget

xor eax, ecx;

xor ebx, ecx;

jmp edx;

Load 0x1818c0ec into eax

Load 0x40 into ebx

• Other gadgets such as mov dword ptr can
perform overwrites.

• These are less commonly found and require
more registers to be set aside.

• Overwrite occurs at the address of the first register
using the value of the second register.

• No stack pivots required. VirtualProtect Parameters

Address Current Value Description

0x1818c0e0 0x1818c0fa Return Address

0x1818c0e4 0x1818c0fa lpAddress

0x1818c0e8 0x00000500 dwSize

0x1818c0ec 0x00000040 flNewProtect

0x1818c0f0 0x1818c0dd lpfOldProtect

Gadget

mov dword ptr [eax], ebx

jmp edx;

Overwriting Dummy Values – Mov

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Gadget

xor eax, ecx;

xor ebx, ecx;

jmp edx;

Load 0x1818c0ec into eax

Load 0x40 into ebx

Final Steps Before the Function Call

• Stack pivot to the start of your
parameters before executing the
function.

VirtualProtect Parameters

Address Current Value Description

0x1818c0e0 0x1818c0fa Return Address

0x1818c0e4 0x1818c0fa lpAddress

0x1818c0e8 0x00000500 dwSize

0x1818c0ec 0x00000040 flNewProtect

0x1818c0f0 0x1818c0dd lpfOldProtect

ESP

• Grab the function pointer and
dereference it before the jump.

Address Gadget

0xd0eec2e4 jmp dword ptr [eax];

Address Gadget

0xebb87b20 mov ecx, dword ptr [eax]; jmp ebx;

0xebb87e77 jmp ecx;

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• The exact address of the dispatch table may
not be known.

• It is possible to spray memory with JOP NOPs
leading up to the actual dispatch table.

• Alignment of the guessed address needs to be correct.

• Make sure to account for multiple entry points
depending on the dispatcher used.

JOP NOPs

Dispatch Table

Address Value Gadget

0x0018fac0 0x4213a871 jmp esi; # JOP NOP

0x0018fac4 0x4213a871 jmp esi; # JOP NOP

0x0018fac8 0x4213a871 jmp esi; # JOP NOP

0x0018facc 0x42138777 pop edx; jmp esi; # Beginning of
JOP chain

Dispatcher Gadget

Address Gadget

0x4213ff90 add ebx, 0x4; jmp dword ptr [ebx]

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Part 3: Automatic JOP Chain
Generation

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Automating chain generation requires us to reduce it
to a recipe.
• This recipe will have many rules that govern how different

aspects of the chain are built, from simple ,to extremely
complex.

• Mona does this effectively with the pushad technique to ROP.
• That is, it uses patterns each for VirtualProtect and VirtualAlloc to

populate registers.

• It tries a variety of unique ways to populate registers.

• When pushad is called, the stack is set up with all values.

• The WinApi function is then called, allowing for DEP to be bypassed.

Automating Chain Generation

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• With JOP, the pushad technique is not viable, as we have
multiple registers reserved.

• With ROP, all gadgets end in RET. With JOP, they end in jmp
reg or call reg – that is 16 possibilities.
• Recall that one register always holds dispatcher gadget and one the

dispatch table

• This makes control flow more challenging on even a manual exploit.

• Usually the simplest approach is to have all functional gadgets end in
a jump or call to the same register – holding the dispatcher gadget.
• We absolutely can switch registers – it just takes more effort.

• All of this would seem to make automation simply infeasible.

Automating Chain Generation

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Si
m

p
lif

yi
n

g
JO

P

• JOP using a manual approach can get complex, even
ugly.
• Wild, out-of-this-world gadgets and code-reuse trickery to do

actions done more easily with ROP?

• What if we could simplify this art of JOP?

• Dare we attempt it?

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Series of Multiple Stack Pivots

Other Stuff on ESP WinAPI Parameters
0x00123400 0x00128300

Memory

• We use multiple stack
pivots to precisely
reach memory pointed
to by ESP that has our
WinAPI params.
• Then we simply make

the WinAPI call.
• These “jumps” are

adjusting ESP – not
affecting control flow.

ESP moved a distance
of 0x4F00 bytes.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Multiple Stack Pivots

We load EAX with WinAPI
function and make the call

[ESI] → Address Gadget

base + 0x15eb add esp, 0x700; # push
edx # jmp ebx

0x41414141 filler

base + 0x15eb add esp, 0x700; # push
edx # jmp ebx

0x41414141 filler

base + 0x17ba add esp, 0x500; # push
edi # jmp ebx

0x41414141 filler

base + 0x14ef add esp, 0x20; # add
ecx, edi # jmp ebx

0x41414141 filler

base + 0x124d pop eax;

0x41414141 filler

base + 0x1608 jmp dword ptr [eax];

Sample Value Stack Parameter for
VP

0x00426024 PTR -> VirtualProtect()

0x0042DEAD Return Address

0x0042DEAD lpAddress

0x000003e8 dwSize

0x00000040 flNewProtect -> RWX

0x00420000 lpflOldProtect → writable

location

We perform a series of stack pivots, totaling
0x1320 (4896) bytes.

Stack pivots move ESP to
VirtualProtect params.

Address Dispatcher Gadget

EBX →

0x00402334
add esi, 0x8; jmp dword
ptr [esi];

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Address Gadget

base +
0x1d3d8

pop edx; ret; # Load
dispatcher gadget

base + 0X1538 add edi, 0xc; jmp
dword ptr [edi]; # DG

base +
0x15258

pop edi; ret; # Load
dispatch table

0xdeadbeef address for dispatch
table!

base + 0x1547 jmp edx; start the
JOP

JOP Chain Generation

JOP setup uses two ROP
gadgets.

• JOP ROCKET searches for dispatcher gadget and
calculates padding.
• ROCKET uses two ROP gadgets to load the dispatch table

and dispatcher dispatcher gadget.
• Then it starts the JOP. ☺

• It discovers pointers to VirtualProtect and VirtualAlloc.

• Utilizes the approach of multiple stack pivots to reach
preset payload

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

JOP Chain Sub-menu

• JOP ROCKET will generate up to five
sample chains for each register, for
VirtualAlloc and VirtualProtect.
• This provides alternate possibilities if

need be.

• Specify the desired min. and max.
stack pivot amounts.
• Some registers may only have large

stack pivots.

• You can reduce or increase the
number of JOP chains built.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

JOP Chain for
VirtualAlloc

VirtualAlloc

Reserves, commits, or changes
the state of a region of pages in
the virtual address space of the
calling process. Memory allocated
by this function is automatically
initialized to zero.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

JOP Chain for
VirtualProtect

VirtualProtect

Changes the protection on a
region of committed pages in
the virtual address space of
the calling process.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

JOP Chain for Virtual Protect

Load EDX with dispatcher gadget.

Load EDI with dispatch table.

Jump to EDX, our dispatcher
gadget—start the JOP!

Let’s kick things off with ROP.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

JOP Chain for Virtual Protect

We have it again, giving us 0x1128
bytes.

Let’s load EAX with a pointer to
VirtualProtect.

Let’s jump to the dereferenced
VirtualProtect!

We have a stack pivot of 0x894
bytes.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

JOP Chain for Virtual Protect

JOP ROCKET gives a basic blue-
print for VirtualProtect parameters.

JOP ROCKET supplies us with a
starting point for other exploit
necessities.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Real World Exploit

• Austin will show us a real-world exploit, using the stack pivot
technique

• JOP ROCKET actually generates a chain that is very similar to
what he did.

• He did it by hand though.
• This provides validation for JOP ROCKET’s efficacy at chain building.

Manual Approach Demo

• We’ll see some key steps of a
manually crafted exploit:
• Stack pivoting

• Avoiding bad bytes

• Writing parameter values

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

IcoFX 2.6 Demo

• IcoFX 2.6
• Vulnerable icon editor.

• This was a challenging binary.
• A small selection of JOP gadgets were used

repeatedly.

• JOP requires creativity – we can still make
things work with some perserverence!

Only viable dispatcher

Only viable stack pivot

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Dispatcher and Stack Pivot

Dispatcher Gadget

Address Gadget

0x00406d81 add ecx, dword ptr [eax]; jmp dword ptr
[ecx];

• Our dispatcher and stack pivot gadgets will need
some special prep before they can be used.

Stack Pivot Gadget

Address Gadget

0x00588b9b pop ebp; or byte ptr [ebx-0x781703bb], cl;
jmp edi;

Eax needs to contain a pointer
to the value to add to ecx.

Ebx needs to allow for a writable
memory address to be dereferenced.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Dereferencing with an Offset

• Since our empty jump contains an offset, we need
to account for this in the function pointer loaded.

Dereference Gadget

Address Gadget

0x004c8eb7 jmp dword ptr [ebp-0x71];

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Part 4: Shellcode-less JOP

Manual Approach Demo

• We’ll see some key steps of a
manually crafted exploit:
• Stack pivoting

• Avoiding bad bytes

• Writing parameter values

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

IcoFX 2.6 Demo

• IcoFX 2.6
• Vulnerable icon editor.

• This was a challenging binary.
• A small selection of JOP gadgets were used

repeatedly.

• JOP requires creativity – we can still make
things work with some perserverence!

Only viable dispatcher

Only viable stack pivot

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Dispatcher and Stack Pivot

Dispatcher Gadget

Address Gadget

0x00406d81 add ecx, dword ptr [eax]; jmp dword ptr
[ecx];

• Our dispatcher and stack pivot gadgets will need
some special prep before they can be used.

Stack Pivot Gadget

Address Gadget

0x00588b9b pop ebp; or byte ptr [ebx-0x781703bb], cl;
jmp edi;

Eax needs to contain a pointer
to the value to add to ecx.

Ebx needs to allow for a writable
memory address to be dereferenced.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Dereferencing with an Offset

• Since our empty jump contains an offset, we need
to account for this in the function pointer loaded.

Dereference Gadget

Address Gadget

0x004c8eb7 jmp dword ptr [ebp-0x71];

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Part 4: Shellcode-less JOP

Shellcode-Less JOP Example

• High-level overview of the exploit:

Set up JOP
control flow

Pivot ESP
0x72 bytes

Perform
LoadLibraryExW() call

Perform
GetProcAddress() call

Perform System() call

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Example: Set up JOP Control Flow

• For our demo program, we’ll be using a
dispatcher gadget of add edi, 0x8; jmp
dword ptr [edi];

• EDI must be loaded with the dispatch table
address.

• For the dispatcher gadget register, EDX is
preferred since it has the most functional
gadgets.

• A setup gadget using JOP exists that can
achieve these goals.

Gadget

pop eax;

pop edx;

pop edi;

xor edx, eax;

xor edi, eax;

call edx;

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• While setting up the control flow we had
control over the stack, but bad bytes were
an issue.

• Further forwards in memory we have an
area where null bytes in the buffer do not
cause problems.

Example: Pivoting the Stack Pointer

• We need to pivot forward to this location
before continuing the exploit (0x72 bytes).

• We’ll repeat the following gadget four times:

• The JOP ROCKET can be used to find pivots
of different lengths for each register.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Some WinAPI parameters such as strings will
require a pointer to the memory address
containing the data.

Gadget

mov eax, esp;

jmp edx;

• Ideally, use gadgets to self-locate and
programmatically supply the address with an
overwrite.

Put current stack
location in eax

Gadget

add eax, ebx;

jmp edx;

Add offset to
string parameter

Gadget

push eax;

jmp edx;

Write string pointer
to memory

Example: Location of Data for
Pointer Parameters

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Our program doesn’t perform ASLR or
rebasing.

• String addresses were hardcoded into the exploit
since they always land at the same locations.

• In a real-world scenario, it will be best to
generate these addresses with JOP if possible.
• Even if addresses appear to stay the same, this can help

ensure the exploit’s stability.

Example: Location of Data for
Pointer Parameters

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Our exploit uses LoadLibraryExW() instead of
the “normal” LoadLibrary() function.

• This function takes two extra parameters.

• More importantly, the “W” signifies that it accepts
wide-character strings rather than normal strings.

• We need to create a wide-character version
of the “msvcrt.dll” string we want to supply.

• This can be OS-dependent.

• In many cases including ours the encoding should
be UTF-16 Little Endian.

• A C++ debugger can help ensure the correct
format is being used.

• Visual Studio works well for this purpose.

Example: Wide-Character Strings

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• Our binary doesn’t contain a pointer to the
GetProcAddress() function.

• We do have pointers to other kernel32 functions
such as LoadLibraryExWStub() and VirtualProtect().

Example: Using Offsets to Find
Function Addresses

• To get the function address, we can use JOP to add
the offset from another function within the same DLL.
• IDA can be used to find the distance between two

functions.
• This method lacks portability – offsets will likely be

different depending on the OS version.

-0x36fe Bytes

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• First, the LoadLibraryExW() pointer is
dereferenced to get its real address.

• Afterwards, the offset can be added to get
the address of GetProcAddress().

• Since the offset is a negative number, two’s
complement is used: 0xffffc902 = -0x36fe

Example: Using Offsets to Find
Function Addresses

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• GetProcAddress() requires a handle to a
module as one of its parameters.

• LoadLibraryExW() returns this handle into eax if
successful.

Example: Using Function Output
as a Parameter

• We will need to use JOP to push this onto
the stack before calling GetProcAddress().

The return address and hModule are
missing before push instructions.

After two push instructions, the
parameters are set up and the
function can be called.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Shellcode-less JOP Demo

Set up JOP
control flow

Pivot ESP
0x72 bytes

Perform
LoadLibraryExW() call

Perform
GetProcAddress() call

Perform System() call

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Part 5: Novel Dispatcher
Gadgets

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Simple Dispatcher Gadgets

• Let’s review what we have as possible single-
gadget dispatchers.

Lea Dispatcher Gadgets

lea reg1, [reg1 + const]; jmp dword
ptr [reg1];

lea reg1 [reg1 + reg * const]; jmp
dword ptr [reg1];

lea reg1, [reg1 + reg]; jmp dword
ptr [reg1];

Add Dispatcher Gadgets

add reg1, [reg + const]; jmp dword ptr
[reg1];

add reg1, constant; jmp dword ptr
[reg1];

add reg1, reg2; jmp dword ptr [reg1];

adc reg1, [reg + const]; jmp dword ptr
[reg1];

adc reg1, constant; jmp dword ptr [reg1];

adc reg1, reg2; jmp dword ptr [reg1];

Sub Dispatcher Gadgets

sub reg1, [reg + const]; jmp dword ptr
[reg1];

sub reg1, constant; jmp dword ptr [reg1];

sub reg1, reg2; jmp dword ptr [reg1];

sbb reg1, [reg + const]; jmp dword ptr
[reg1];

sbb reg1, constant; jmp dword ptr [reg1];

sbb reg1, reg2; jmp dword ptr [reg1];

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Expanding the Dispatcher Gadget

• The dispatcher is the quintessential JOP gadget.
• Without it, this style of JOP is simply not possible.

• Other forms of JOP certainly still are though.

• The dispatcher is relatively obscure in its most desirable form.
• Best form: short and sweet, add ebx, 0x8; jmp dword ptr [ebx]

• This only uses two registers, and no side effects on other registers.

• A three-register form is possible: add ebx, edi; jmp dword [ebx]

add ebx, 0x4;
jmp dword ptr [ebx]

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Dispatcher dereference
gadget

Dispatcher
index gadget

Address Gadget

0ab0dabb add edx, 0x8; jmp ebp

Register Address Gadget

ebp deadc0de jmp dword ptr [edx]

Two-gadget Dispatcher: Jmp

Dispatch Table

Address Value Gadget

F9ED2340 0ab01234 xor edx, ecx; jmp edi

F9ED2344 41414141 Padding

F9ED2348 0ab0badd push ebx; jmp edi

F9ED234C 41414141 Padding

F9ED2350 0ab0dadd push ecx; jmp edi

F9ED2354 41414141 Padding

F9ED2358 0ab0cadd push eax; jmp edi

F9ED235C 41414141 Padding

• 1st gadget will predictably
modify (e.g. add to) R1
and jump to R2.

• 2nd gadget dereferences R1,
dispatching the next
functional gadget.

• Two gadgets is freeing.
• Much simpler to find a gadget

that merely adds to a register
and jumps to another.

• Many potential gadgets to
select from.

Now any add or sub that
jumps to a different register

works.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

“Empty” Jmp Dword Derefernces

• This is the second part of two-gadget dispatcher.

• Some of these “empty” jmp [reg] gadgets exist only
for one line.

• They may disappear when expanded to two lines.
• This is due to opcode splitting: unintended instructions.
• For medium to large binaries, there nearly always will be

one.
• Thus we can take it for granted the second gadget will be

there waiting for us.
• For IcoFx2, 20 mb, there were 1300+ total for all registers.
• For GFTP, 1.6 mb, there were 100+ total for all registers

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Dispatcher
index gadget

Dispatcher dereference
gadget

Two-gadget Dispatcher: Call

Address Gadget

0ab0dabb add edx, 0x8; call ebp

Register Address Gadget

ebp deadc0de pop ebx; jmp [edx] # pop
compensates the call.

Dispatch Table

Address Value Gadget

F9ED2340 0ab01234 xor edx, ecx; jmp edi

F9ED2344 41414141 Padding

F9ED2348 0ab0badd add ecx, 0x45; jmp edi

F9ED234C 41414141 Padding

F9ED2350 0ab2ba34 push ecx; jmp edi

F9ED2354 41414141 Padding

F9ED2358 0ac0d3dd push eax; jmp edi

F9ED235C 41414141 Padding

• Dispatchers with call are
problematic.

• They add to the stack with
each use!

• Not usable if adding to the
stack, e.g. DEP bypass

• The call form of DG can be usable
with a two-gadget dispatcher!

• We only need to find an jmp
[reg] that has a pop in it to
compensate.

• This comes at an extra cost: now
four registers must be preserved.

• Still viable if doing multiple
stack pivot technique.

• Same gadget can be reused.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Alternative Dispatcher Gadgets

• Alternative string instructions can be used to predictably modify ESI
and/or EDI.

• We can distance ourselves from their intended purpose
• What matters is what they accomplish in terms of control flow.

• Plentiful, but scarcer as short dispatcher gadgets

Other Dispatcher Gadgets Dereferenced Overwritten Point to
Memory

Distance Opcode

lodsd; jmp dword ptr [esi]; ESI EAX ESI, EAX 4 bytes AD

cmpsd; jmp dword ptr [esi]; ESI None ESI, EDI 4 bytes A7

cmpsd; jmp dword ptr [edi] EDI None ESI, EDI 4 bytes A7

movsd; jmp dword ptr [esi] ESI [EDI] ESI, EDI 4 bytes A5

movsd; jmp dword ptr [edi] EDI [EDI] ESI, EDI 4 bytes A5

scasd; jmp dword ptr [edi] EDI None EDI 4 bytes AF

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

ESI is incremented by
4 each time it is called.

Alternative String Dispatchers

• All these alternative
dispatchers take on
a similar form.

• No padding
needed.
• It increments by 4.
• The qword form

increments by 8,
e.g. lodsq

Dispatch Table

Address Value Functional Gadget

F9ED2340 0ab01234 xor edx, ebx; jmp
edi

F9ED2348 0ab0badd push ebx; jmp edi

F9ED2350 0ab2baee push ecx; jmp edi

F9ED2358 0ab0da44 push eax; jmp edi

Address Dispatcher Gadget

deadc0de lodsd; jmp dword ptr
[esi]

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

• We let lodsd increment
ESI by 4 in the
dispatcher index gadget.

• Next, we dereference,
allowing us to reach our
next functional gadgets.

Address Gadget

0ab0dabb lodsd; jmp ebp

Dispatch Table

Address Value Functional Gadget

F9ED2340 0ab01234 xor edx, ebx; jmp edi

F9ED2348 0ab0badd push ebx; jmp edi

F9ED2350 0ab2baee push ecx; jmp edi

F9ED2358 0ab0da44 push eax; jmp edi

Register Address Dispatcher
Dereference Gadget

ebp deadc0de jmp [esi]

Dispatcher
index gadget

Dispatcher dereference
gadget

Yes, a Two-Gadget String Dispatcher Works

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Part 6: Various Topics

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Control Flow Guard

• CFG is Microsoft’s answer to control flow integrity.

• CFG is coarse-grained CFI done at the compiler level.
• It is imperfect.

• When implemented effectively, it can provide some defense against
JOP.
• Again though…it is imperfect.

• There have been bypasses, but we only discuss ways to avoid CFG.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Control Flow Guard
• Control Flow Guard checks are

only inserted in front of compiler-
generated indirect calls/jumps.

• We can still use instances of
CALL/JMP which are generated via
opcode splitting.
• These likely will be shorter gadgets.

Opcodes Instruction

BF 89 CF FF E3 mov edi, 0xe3ffdf89

Opcodes Instruction

89 CF FF E3 mov edi, ecx; jmp eax

Enrich the attack
surface with
unintended
instructions

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

c

• f

• JOP ROCKET checks a binary’s
CFG status.

• If CFG is false, a DLL lacks
enforcement of CFG.

• JOP ROCKET allows you to exclude
DLLs with CFG.

• But JOP gadgets formed by
unintended instructions can avoid it

• If a JOP gadget looks like it will
work—meaning no CFG, even
though the module has CFG--it will.

• We can look for DLLs without CFG.

• Inline Assembly is not checked by
CFG, so gadgets from these can be
used.

• CFG is only supported on Windows
8 and above.

• Windows 7 lacks support for CFG.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Using JOP as ROP

• If we are totally committed to ROP, we can still
extend the attack surface to JOP briefly.

• Here JOP functions much like ROP, with the
stack and ret being used for control flow.

Address Gadget

base +
0x1ebd

pop edx; ret;

base +
0x1538

ret

Address Gadget

base +
0x1b34

add ebx, edi # jmp edx

Address Gadget

base +
0x1db2

add ebx, edi # ret=
This gadget only returns!

Load EDX with RET.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Research Goals

Our goal has been two-fold:

Expand and make JOP viable.

Bring the knowledge and the

tools to exploit developers.

We hope we have
helped you.

Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

Thank You!
Bramwell Brizendine & Austin Babcock | JOP ROCKET: Bypassing DEP with Jump-Oriented Programming

