
JARM Randomizer: Evading JARM Fingerprinting

Dagmawi Mulugeta

Threat Research Engineer, Netskope

CommSec
Track

Background
Currently a Threat researcher @ Netskope

Previously
- Researcher @ Cyrisk
- Software Engineer @ Sift Security
- Developer @ ECFMG

MSc in Cybersecurity from Drexel University

Interests: CTFs, exploit development, and cloud apps

Introduction
1) JA3 and JARM: two methods of SSL/TLS Fingerprinting

2) Why JARM is not reliable as a lone tool

3) Server side configurations tweaks result in different JARM fingerprints

4) Present JARM Randomizer, a tool to cycle through JARM fingerprints

1) What are JA3 and JARM?

How does SSL/TLS work?
TLS version and cipher suites are agreed to between client and
server prior to any data exchange [1]

Image source [6]

JA3
Introduced in 2017 by Salesforce. Found here

Fingerprint Client Hello in a TLS/SSL handshake

These fields are hashed as a fingerprint:
1. TLS Version
2. Ciphers
3. TLS Extensions
4. Supported Groups (Elliptic Curves)
5. Elliptic Curve Point Formats

Quite useful when identifying unusual clients in network

[10]

https://github.com/salesforce/ja3

JARM

Introduced in 2020 by Salesforce.

Fingerprint Server Hello in a TLS/SSL handshake

Capture the server’s responses:

1. TLS Version
2. Cipher chosen
3. TLS Extensions

https://github.com/salesforce/jarm

JARM Technique

Send ten specially crafted TLS Client Hello packets

PyJARM implementation of Hellos seen below
Ciphers Version Cipher Order GREASE ALPNs Support Extension Order

All 1.1 Forward No All None Forward
All 1.2 Forward No All 1.2 Reverse
All 1.2 Reverse No All 1.2 Forward
All 1.2 Top Half No All None Forward
All 1.2 Bottom Half No Rare None Forward
All 1.2 Middle Out Yes Rare None Reverse
All 1.3 Forward No All 1.3 Reverse
All 1.3 Reverse No All 1.3 Forward
All 1.3 Middle Out Yes All 1.3 Reverse

Exclude 1.3 1.3 Forward No All 1.3 Forward

https://github.com/PaloAltoNetworks/pyjarm

JARM Fingerprint
Fingerprint is consecutive 30-character and 32-character long blocks into
one hash

- First half made of TLS versions and ciphers chosen to each ClientHello
- Second half represents a truncated SHA256 hash of the server-side

extensions [4]

2) What are the challenges with JARM?

JARM weaknesses
Heavily dependent on [3]:

• Operating system and version
• Packages and libraries
• Other custom configurations

E.g., the JARM for Cobalt Strike, a popular red team tool, is actually the JARM for Java 11 TLS stack [5]

JARM + Other Intel JARM as a lone tool

Useful to provide information around attacker infrastructure Results in high FPs

Tough to evade when combined with other detections Easily evadable via Proxy or Load Balancer

3) How do changes in server-side configuration affect JARM?

Configuration Changes
Tested on macOS using PyJARM[11] for fingerprinting

Used SSL in Python to cycle through the TLS Versions and Ciphers and fingerprinted the
server

Result is a list of different JARMs

https://github.com/PaloAltoNetworks/pyjarm

4) How can we use this to evade JARM?

Evading SSL/TLS fingerprinting

JA3Transport [9] : allowing offensive Go tools to make HTTPS
requests using a custom fingerprint

JARM Randomizer: cycling through supported server-side
configurations

[9]

JARM Randomizer
At the heart of it, it cycles through supported TLS version + Ciphers

Dependencies

- Pipenv
- Python 3.9
- PyJARM
- Shodan
- Pybinaryedge

Current Features

- Iterate and identify valid configurations during setup
- Query usage on BinaryEdge and Shodan
- Cross check against a red team tool list
- Cycle setting to rotate configs at specified intervals

https://pypi.org/project/pipenv/
https://docs.python.org/3/whatsnew/3.9.html
https://github.com/PaloAltoNetworks/pyjarm
https://shodan.readthedocs.io/en/latest/
https://pypi.org/project/pybinaryedge/

Placement
- Python proxy that is placed in front of a C2 server

- Use this, alongside tools like Cobalt Strike, to evade
fingerprinting of the tool itself

 Without Randomizer With Randomizer

Setup
Required step to identify supported configurations

Also, lay groundwork to run proxy

Analysis
From a macOS:

- 31 possible JARMS across 48 TLS - Cipher pairs
- Table below shows top 5 when sorted by occurrence in Shodan
- JARM for red team tools obtained from this repo[14]

jarm binary edge shodan tls_cipher_pair_instances red team tools sample servers with similar JARM
2ad...4e8 3172 12176 1 0 IVFRT-NIC; Microsoft-IIS/8.0; Vault 1.0
2ad...6eb 477 47434 1 5 Apache; CradlepointHTTPService/1.0.0; EZproxy
29d...6eb 167 3130 1 0 AIS Streaming Server 9.0.2; Asterisk/13.36.0; Asterisk/16.14.1
29d...4e8 46 578 1 0 ReactPHP/1; Zattoo/20210413.121332

000...b64 37 553 18 0 Apache; Apache/2.4.29 (Ubuntu); Apache/2.4.37 (centos) OpenSSL/1.1.1c

https://github.com/cedowens/C2-JARM

Use cases
Serve with one preferred JARM

Cycle through JARMs

Limitations
1) Finite number of signatures

2) Client compatibility check required

3) C2 traffic can still be identified by other methods

4) Not exhaustive, but rather a step to fully evade fingerprinting

Recognition & Open Source
Salesforce Engineering [4] for JA3/JARM
CU Cyber[12] for working on JA3Transport
JARM Randomizer can be found here

https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://cucyber.net/
https://github.com/netskopeoss/jarm_randomizer

Conclusion
Takeaways

1. JA3 and JARM: two methods of SSL/TLS Fingerprinting
2. JARM is not reliable as a lone tool to fingerprint servers
3. Server side configurations tweaks result in different JARM fingerprints
4. JARM Randomizer, a tool to cycle through JARM configurations

Keep an eye out on our blog for latest TLS Fingerprinting research & tools

https://www.netskope.com/blog/category/netskope-threat-labs

Contact
Twitter: @dagmulu

Linkedin: dmulugeta

Github: jarm_randomizer

Future updates on our blog

https://twitter.com/dagmulu
https://www.linkedin.com/in/dmulugeta
https://github.com/netskopeoss/jarm_randomizer
https://www.netskope.com/blog/category/netskope-threat-labs

Thank You
For your attention

References
[1] https://securitytrails.com/blog/jarm-fingerprinting-tool

[2] https://www.exoprise.com/2019/07/29/monitor-ssl-expiration-spoofing-changes/

[3] https://www.cloudflare.com/en-gb/learning/ssl/what-happens-in-a-tls-handshake/

[4] https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a

[5] https://blog.cobaltstrike.com/2020/12/08/a-red-teamer-plays-with-jarm/

[6] https://www.researchgate.net/figure/TLS-handshake-protocol_fig1_298065605

[7] https://medium.com/cu-cyber/impersonating-ja3-fingerprints-b9f555880e42

[8] https://tarshpartnership.co.uk/career-advice/interview-tips-whats-your-biggest-weakness/

[9] https://github.com/CUCyber/ja3transport

[10] https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967

[11] https://github.com/PaloAltoNetworks/pyjarm

[12] https://cucyber.net/

[13] http://draw.io/

[14]https://github.com/cedowens/C2-JARM

https://securitytrails.com/blog/jarm-fingerprinting-tool
https://www.exoprise.com/2019/07/29/monitor-ssl-expiration-spoofing-changes/
https://www.cloudflare.com/en-gb/learning/ssl/what-happens-in-a-tls-handshake/
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a
https://blog.cobaltstrike.com/2020/12/08/a-red-teamer-plays-with-jarm/
https://www.researchgate.net/figure/TLS-handshake-protocol_fig1_298065605
https://medium.com/cu-cyber/impersonating-ja3-fingerprints-b9f555880e42
https://tarshpartnership.co.uk/career-advice/interview-tips-whats-your-biggest-weakness/
https://github.com/CUCyber/ja3transport
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://github.com/PaloAltoNetworks/pyjarm
https://cucyber.net/
http://draw.io/
https://github.com/cedowens/C2-JARM

