CommSec

Playing hide-n-seek with AWS GuardDuty: Post-DNS era covert channel for C&C and data exfiltration

Sze Siong Teo Independent Security Researcher

Disclaimer: The contents expressed in this presentation are solely my own and do not express the views or opinions of my employer.

Who am I?

- Developer
- Sysadmin
- Infosec guy

LinkedIn - https://www.linkedin.com/in/ssteo/

Agenda

- DNS tunneling, NIDS, HIDS and SIEM
- Covert channel using SaaS or CDN
- Amazon GuardDuty evasion
- Proof-of-Concept and demo
- Common fallacy of AWS & mitigation tips

DNS Tunneling

- Direct TCP & IRC Perl & C code, NetBus, BackOrifice, Sub7 (1990s)
- DNS Tunneling Bugtraq by Oskar Pearson (April 1998)
- Attacker's web server Malware/backdoor programs (2000s)
- Reddit posts iWorm botnet (2014)
- GitHub commits Black Hat Python by Justin Seitz (2015)
- Twitter tweets and GitHub Hammertoss by APT29 (2015)
- Instagram comments Trojan horse by Turla Group (2017)

DNS Tunneling

DNS Tunneling

But... DNS queries are not encrypted

What about DNS over HTTPS (DoH) and DNS over TLS (DoT)?

Network-based IDS (NIDS)

- Network-based IDS (E.g. Snort, Zeek, Suricata, etc.)
 - Able to detect DNS tunneling, but not 100%
 - Inspect packet header and unencrypted packet data (DPI)
 - Limited insight on encrypted channels like HTTPS
 - DPI does not scale well for high throughput networks

Host-based IDS (HIDS)

- Host-based IDS (E.g. OSSEC, Wazuh, ThreatStack, etc.)
 - Monitor filesystem integrity, processes, network and analyzes logs
 - Performance & stability concerns (Some use kernel-mode hooks)
 - Not very platform/distro agnostic (due to kernel module)
 - Can be noisy, might end up as a crying wolf

Security info and event management (SIEM)

- SIEM (E.g. ELK stack, Datadog, Splunk, AlienVault, etc.)
 - Ingest logs from various sources
 - Aggregate logs to gain traffic insights
 - Alerts and reactive actions can be triggered
 - Event search and investigation capability

- Examples of popular enterprise SaaS
 - Source control GitHub, GitLab, Bitbucket, etc.
 - APM tools NewRelic, Dynatrace, AppDynamics, etc.
 - Monitoring tools Datadog, Grafana, LogicMonitor, etc.
- Examples of popular CDN/WAF services
 - CloudFlare, Fastly, Imperva, etc.

- Assume that the target server for data exfiltration
 - No ingress traffic from Internet, private network, no public IP
 - Only egress traffic to the Internet is through a NAT gateway
 - Uses Internet to fetch GitHub repos and get OS updates
 - Compromise it through supply chain attack (malware)

- Setup for C&C/data exfiltration channel
 - 1. Gather the IP range of top 10 (or more) cloud services that
 - · are widely used by many organizations
 - have publicly documented API
 - have ability to store and retrieve data
 - 2. Gather the IP range of top 5 CDN services
 - 3. Create SaaS accounts for API keys and setup C&C server behind CDNs
 - 4. Embed API keys and IP range data into the malware

- Malware monitors OS connection table for at least 24 hours
 - Look for remote IP that matches any embedded IP range data
 - Linux /proc/net/tcp (IPv4), /proc/net/tcp6 (IPv6)
 - Windows GetTcpTable (IPv4), GetTcp6Table (IPv6)
- Or... find repo host with IP that matches any embedded IP range data
 - /etc/apt/sources.list.d/*
 - /etc/yum.repos.d/*

- 1. Found a matching SaaS IP? Use it to blend in the C&C traffic
 - Malware ← store/retrieve data → SaaS's storage as data exchange medium
 - C&C Server ← store/retrieve data → SaaS's storage as data exchange medium
- 2. Found a matching CDN IP? Use it to blend in the C&C traffic
 - Malware → request → CDN as proxy for C&C → request → C&C Server
 - Malware ← response ← CDN as proxy for C&C ← response ← C&C Server
- 3. No matching IP? Pick a CDN, still less suspicious than directly to C&C Server
 - Malware → request → CDN as proxy for C&C → request → C&C Server
 - Malware ← response ← CDN as proxy for C&C ← response ← C&C Server

- Amazon GuardDuty data sources
 - CloudTrail logs all AWS API call and S3 data events
 - VPC Flow Logs logs VPC traffic's packet header without content
 - Threat intel feed Known malicious IP addresses, etc.
 - DNS logs logs all DNS requests to AWS DNS resolver

Note: IAM is the core service of AWS, all AWS API calls use it

- Evasion criteria, the C&C traffic must not
 - Call AWS API with compromised host's IAM access (CloudTrail)
 - Communicate with any unknown IP address (VPC Flow Logs)
 - Communicate with any malicious IP (Threat intel feed)
 - Use DNS tunneling (VPC Flow Logs and DNS Logs)

- How the ideal "solution" looks like?
 - A medium for data exchange without leaving trace in CloudTrail
 - The medium for data exchange must be trusted by AWS
 - Simple to implement in malware without additional dependency
 - Uses standard HTTPS traffic for communication

Option #1 - Embed the IAM user access key of the attacker

- Can use any AWS resource of the attacker (E.g. S3, SQS, DynamoDB)
- STS::GetCallerIdentity() reveals AWS account ID and IAM username
- Need HMAC/SHA256 library to sign AWS API call at the compromised host 🐶

Note: This method only generates CloudTrail logs in the attacker's AWS account

Option #2 — Setup C&C server behind AWS CloudFront (CDN)

- No API call signing is required (i.e. Embed API key and URL of C&C in malware) 🔼
- EC2 initiated outbound connection to CloudFront may appear suspicious 🔛

Note: Amazon Linux 2's package repository uses S3 without CloudFront (i.e. https://amazonlinux-2-repos-[region].s3.[region].amazonaws.com)

Option #3 — Use attacker's S3 bucket via pre-signed URL

- No API call signing is required, URL already has signature 🐴
- S3 is preferred over CloudFront due to AL2's package repository using it
- Limited validity of 7 days, but workaround is possible \delta

Proof-of-Concept and demo

AMSTERDAM - 2021

Sze Siong Teo | Security Researcher

Common fallacy of AWS & mitigation tips

- 1. Allowing all egress traffic to AWS services is safe
 - Use PrivateLink endpoint policy to restrict traffic to a specific S3 bucket
- 2. Using iptables in EC2 is the same as using security groups
 - 😡 It is recommended to use security groups over iptables
- 3. GuardDuty is good enough for overall security monitoring
 - Continuous tweaking of SIEM is the key to improve security visibility

Thank You

LinkedIn - https://www.linkedin.com/in/ssteo/

