
The Art of Exploiting UAF by
Ret2bpf in Android Kernel

TRACK 1

Xingyu Jin | Richard Neal
Android Security Team, Google

Who Are We?

● Xingyu Jin
○ Security Engineer at Google

○ Occasionally play CTFs and hunting kernel bugs.

● Richard Neal
○ Android Malware Research team at Google

○ Security Engineer (and manager)

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 2

Agenda

● Kernel Internals of Android netfilter module xt_qtaguid
○ Known vulnerabilities in the past

● CVE-2021-0399 Vulnerability Analysis
● Exploit CVE-2021-0399

○ Demo on exploiting Android device
● Mitigations
● How does Google detect exploit code at scale

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 3

Android module xt_qtaguid

4The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

xt_qtaguid Introduction

● Data usage monitoring and tracking functionality since Android 3.0
○ Track the network traffic on a per-socket basis for unique app

● Module /dev/xt_qtaguid exists on Android devices since 2011
○ Replaced by eBPF since Android Q

● Userspace sends commands to kernel
○ E.g. TrafficStats.tagSocket API

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 5

userspacekernel

xt_qtaguid Open Device

● Allocate struct uid_tag_data for
every unique uid

● Allocate struct proc_qtu_data for
every unique pid

● N:1

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 6

xt_qtaguid Tag Socket (ctrl_cmd_tag)
● Read socket fd, tag and uid from userspace

○ sscanf(input, "%c %d %llu %u", &cmd, &sock_fd, &acct_tag, &uid_int);

● Creating tag_ref and sock_tag

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 7

● Tag socket(ctrl_cmd_tag) VS Untag socket(ctrl_cmd_untag->qtaguid_untag)
xt_qtaguid

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 8

Vulnerability Analysis & Exploitation

9The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

CVE-2016-3809
● Kernel Information Leak

● Read /proc/net/xt_gtaguid/ctrl and obtain the kernel address of socket structure

○ sock=0xffffffc01855bb80, …

○ Strengthen CVE-2015-3636, ... exploits :-/

● You may still find OEM devices after 2017 with this bug :-/

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 10

CVE-2017-13273
● Race condition due to incorrect locking

○ UAF on tag_ref_tree

● From 2011 to 2020, 2 vulnerabilities were reported in xt_qtaguid.c

○ 1 kernel heap information leak

○ 1 UAF by race

● What can possibly go wrong in 2021?

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 11

● Discovered by external researcher

○ In xt_qtaguid.c, there is a potential UAF.

○ No PoC or exploitation details provided but researcher believes it’s

impossible to exploit on modern devices which enable

CONFIG_ARM64_UAO

● Minimal crashing PoC by Richard:

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 12

tag_socket(sock_fd, /*tag=*/0x12345678, getuid());
fork_result = fork();
if (fork_result == 0) {

untag_socket(sock_fd);
} else {
 (void)waitpid(fork_result, NULL, 0);
}
exit(0);

● Untag socket(ctrl_cmd_untag->qtaguid_untag)...
○ Find corresponding proc_qtu_data based on pid.
○ Remove sock_tag from proc_qtu_data.list.
○ Free sock_tag.

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 13

● An application may call fork and untag the socket in the child
process
○ So pqd_entry == NULL

● Kernel complains about the unexpected situation but doing nothing
● sock_tag_entry->list is not removed but sock_tag_entry is freed

○ UAF

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 14

Exploit CVE-2021-0399

15

Own your Android!
SELINUX, SECCOMP, KASLR, PAN, PXN, ADDR_LIMIT_CHECK, CONFIG_ARM64_UAO
CONFIG_SLAB_FREELIST_RANDOM CONFIG_SLAB_FREELIST_HARDENED
Targeting at recent device manufactured in 2019-2020
Security Patch level 2021 Jan + Android Pie & Kernel 4.14
(e.g. Xiaomi Mi9, OnePlus 7 Pro)

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

Step 0 - eventfd leaks kernel heap address
● Most devices use kmalloc-128 as the minimal size of the slab object

○ E.g. the size of the object by kmalloc(/*obj_size=*/10) is 128 bytes

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 16

● Child process calls ctrl_cmd_untag
○ sock_tag is freed
○ Spray eventfd

17

● Untag another sock_tag: unlink
○ sock_tag->prev->next = sock_tag->next

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 18

eventfd_ctx->count = &list_head

● Read /proc/self/fdinfo/$fd
○ Info leak for the head node

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 19

Step 1 - Double Free on kmalloc-128
● Naive try

○ Close the device(qtudev_release), will it free the sock_tag again?
○ qtudev_release will put all unlinked sock_tag to st_to_free_tree and free

them later

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 20

● Naive try
○ Kernel crash

● The security check in qtudev_release is rigorous
● qtudev_release will check if the tag is valid or not

○ tag_ref doesn’t exist? Crash
○ When socket is untagged, tr->num_sock_tags is dereferenced as 0x0
○ BUG_ON(tr->num_sock_tags <= 0);

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 21

● Head node leaked
● Free tag B by child(UAF)
● Untag tag C by parent

○ Leak the address of tag D

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal
22

● Spray on B, D with carefully crafted data for bypassing kernel checks
● Tag impersonation: “B”->”E”, “D”->”F”
● Free sprayed buffer: __rb_parent_color should be accessible for

rb_erase

23

One more thing: CVE-2021-0399 + CVE-2016-3809
● When qtudev_release is called, sock_put(st_entry->sk) will be invoked
● Kernel socket UAF
● Time travel

○ CVE-2015-3636(pingpong)
○ CVE-2017-11176(mq_notify double sock_put)
○ ...

24

Step 2 - KASLR leak
● sizeof(struct sock_tag) == 64, kmalloc-128 object == 2 sock_tag

25

Kernel calls
- kfree(sock_tag)
- kfree(sock_tag + 0x40)

● Consider spraying slab at the beginning of the exploit

26

● Open /proc/cpuinfo
○ Kernel will allocate seq_file structures
○ seq_file <-> eventfd_ctx

■ slab might look like this

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

● Leak
○ eventfd_ctx->count now becomes const struct

seq_operation* op
○ Spinlock still works

● Kernel ASLR leak on Xiaomi Mi9 device (released on 2019)

27

Step 3 - Rooting (possible primitives)
● If CONFIG_SLAB_FREELIST_HARDENED is not enabled

○ Double free => KSMA(Kernel Space Mirroring Attack)
● Primitive Candidate: sk_put(sk) where you can control sk

○ dec(sk->__sk_.common.skc_refcnt) if sk->sk_wmem_alloc > 0
○ Possible ways to disable selinux and kptr_restrict

■ Depends on the kernel image
■ Disable kptr_restrict -> CVE-2016-3809 socket struct info

leak -> sock UAF!

28The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

Controlling seq_operations
● Primitive: Overwriting seq_operations

○ write(fd, &offset, sizeof(offset) will overwrite seq_operations
○ Overwrite cpuinfo_op to consoles_op, so we can find the file descriptor of

the overlapped seq_file
● Overwrite seq_operations to a leaked heap address

29The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

Overwriting addr_limit?
● Because of two overlapped seq_file, you may control first 64 bytes of the

seq_file overlapped with the eventfd by another heap spray
● Old trick: ROP on kernel_getsockopt

○ Unfortunately it doesn’t work on 4.14 arm64
■ addr_limit_user_check is against tampering addr_limit
■ CONFIG_ARM64_UAO(enabled by default in 4.14) is against

tampering addr_limit

30The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

The Ultimate ROP
● As mentioned by Project Zero blog post “an ios hacker tries android”, Jann

Horn recommends using ___bpf_prog_run for building ROP gadget
● Invoke arbitrary bpf instructions without verification

○ Arbitrary kernel R&W primitive
○ Turn off kptr_restrict & SELINUX

● Example for turning off SELINUX
○ BPF_LD_IMM64(BPF_REG_2, selinux_enforcing_addr)
○ BPF_MOV64_IMM(BPF_REG_0, 0)
○ BPF_ST_MEM(BPF_DW, BPF_REG_2, BPF_REG_0, 0x0)
○ BPF_EXIT_INSN()

31The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

Root shell
● Once kptr_restrict is turned off, we can get a leaked sock address
● Hammer sock->sk_peer_cred with BPF instructions in a leaked kmalloc-128

object:
○ BPF_LD_IMM64(BPF_REG_2, sk_addr)
○ BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_2, 568)
○ BPF_MOV64_IMM(BPF_REG_0, 0x0)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 4)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 12)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 20)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 28)
○ BPF_MOV64_IMM(BPF_REG_0, -1)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 40)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 48)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 56)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 64)
○ BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 72)
○ BPF_EXIT_INSN()

● Are there other ways to do exploit? Yes
32The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

● PWN Mi9 device in less than 10 seconds!

33

https://docs.google.com/file/d/1zC8ohSq0swtJsu8As3cEgAEVj7oxwZTM/preview?resourcekey=0-BLDnC6IAB2QTkMrrWNmkow

Detecting & Mitigating Exploitation

34The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

Mitigations

35The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

CONFIG_SLAB_FREEELIST_HARDENED

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 36

Bypassed with

signalfd

● Freelist is encrypted -> __rb_parent_color becomes invalid
● signalfd(-1, &sigmask, 0x0)

■ sigmask = ~head_address
■ signalfd_ctx->sigmask =

head_addr | 0x40100
● MCAST_JOIN_GROUP may also work for similar

scenarios

Kernel Electric Fence

● KFENCE is a low-overhead sampling-based memory safety error
detector of heap use-after-free, invalid-free, and out-of-bounds
access errors.

● KFENCE hooks to the SLAB and SLUB allocators.
● Compared to KASAN, KFENCE trades performance for precision.

○ Guarded allocations are set up based on a sample interval

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 37

CONFIG_ARM64_UAO

● Kernel memory access technique
○ Overwrite addr_limit
○ Use pipes to read/write kernel memory

● ARMv8.2-A User Access Override
○ Changes behaviour of LDTR and STTR above EL0
○ Allows Privileged Access Never (PAN) to be enabled all the time

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 38

Bypassed with

return2bpf

Seq_file Isolation / KSMA defense

● seq_file has its dedicated cache
● Researcher Jun Yao also had proposals about making Android

exploitation more difficult by defeating KSMA
○ https://lore.kernel.org/patchwork/cover/912210/

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 39

https://lore.kernel.org/patchwork/cover/912210/

Kernel Control Flow Integrity

● Blocks attackers from redirecting the flow of execution
● Available from 2018 in Android kernel 4.9 and above

○ Uses LTO and CFI from clang
● Relevant change in seq_read:

 show = private_data->op->show;
 if (__ROR8__((char *)show - (char *)_typeid__ZTSFiP8seq_filePvE_global_addr, 2) >= 0x184uLL)
 _cfi_slowpath(0x5233D5BC7887AE44uLL, private_data->op->show, 0LL);
 v31 = show(private_data, (void *)v34);

● Detects the modified show pointer -> panic()

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 40

https://lwn.net/Articles/810077/
https://source.android.com/devices/tech/debug/kcfi
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html

CONFIG_BPF_JIT_ALWAYS_ON

● Required for Android but not on ARM32
● BPF must use JIT

○ No interpreter
○ ___bpf_prog_run is not compiled, cannot be called

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 41

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=290af86629b25ffd1ed6232c4e9107da031705cb
https://android.googlesource.com/kernel/configs/+/038e011%5E%21/

CONFIG_DEBUG_LIST
● Now required for Android (recommended by Maddie from P0)
● __list_add_valid and __list_del_entry_valid check link pointers:

bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next) {
if (CHECK_DATA_CORRUPTION(next->prev != prev,

"list_add corruption. next->prev should be prev (%px), but was %px. (next=%px).\n",
prev, next->prev, next) ||

 CHECK_DATA_CORRUPTION(prev->next != next,
"list_add corruption. prev->next should be next (%px), but was %px. (prev=%px).\n",
next, prev->next, prev) ||

 CHECK_DATA_CORRUPTION(new == prev || new == next,
"list_add double add: new=%px, prev=%px, next=%px.\n",
new, prev, next))

return false;

return true;
}

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 42

https://android.googlesource.com/kernel/configs/+/a3e93c9%5E%21/
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://elixir.bootlin.com/linux/v4.19.193/C/ident/bool
https://elixir.bootlin.com/linux/v4.19.193/C/ident/__list_add_valid
https://elixir.bootlin.com/linux/v4.19.193/C/ident/list_head
https://elixir.bootlin.com/linux/v4.19.193/C/ident/new
https://elixir.bootlin.com/linux/v4.19.193/C/ident/list_head
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/list_head
https://elixir.bootlin.com/linux/v4.19.193/C/ident/CHECK_DATA_CORRUPTION
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/CHECK_DATA_CORRUPTION
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/CHECK_DATA_CORRUPTION
https://elixir.bootlin.com/linux/v4.19.193/C/ident/new
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/new
https://elixir.bootlin.com/linux/v4.19.193/C/ident/new
https://elixir.bootlin.com/linux/v4.19.193/C/ident/prev
https://elixir.bootlin.com/linux/v4.19.193/C/ident/false
https://elixir.bootlin.com/linux/v4.19.193/C/ident/true

Detect Exploits at Scale

43The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

On-Device Protection

● Application verifier
● Similarity analysis against known-bad APKs
● Detection rules
● Advanced Protection

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 44

https://support.google.com/googleplay/android-developer/answer/2992033?hl=en-GB
https://landing.google.com/advancedprotection/

Backend Infrastructure

● Google Play applications are constantly analysed
● Generation of data

○ Static analysis
■ APK contents
■ Unpacking
■ Deobfuscation

○ Dynamic analysis
● Interpreting data

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 45

https://transparencyreport.google.com/android-security/overview?hl=en

Manual Analysis

● Sources
○ Internal collaboration - Android Security Assurance, Project

Zero, TAG, Trust & Safety
○ External reports

● Work
○ Reverse engineering + Research

● Outputs
○ Documentation, new detection techniques / systems

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 46

https://security.googleblog.com/2021/02/vulnerability-reward-program-2020-year.html
https://www.google.co.uk/about/appsecurity/android-rewards/

Behavioural Detection

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal

● What the code does, not what it looks like
● Root exploits need to interact with the kernel

47

Behavioural Detection

● eBPF allows monitoring of calls and parameters
● Look for evidence of exploit behaviour, e.g. floods
● Interesting syscalls

○ fsetxattr+inotify
○ getsockopt / setsockopt MCAST_JOIN_GROUP

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 48

CVE-2018-9568

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 49

https://docs.google.com/file/d/1T09f9b0KBmRojq6x6ELAvR1jpE0su748/preview?resourcekey=0-YgmF3_KRRw9Pd4IVSjiTMg

Summary

● Researchers
○ Keep looking for workarounds

● Users
○ Multiple levels of mitigation block all these techniques
○ Generic Kernel Image will get updates to users faster

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 50

Thank you!

● Thanks Jann Horn for suggesting Android exploitation tips on real
physical Android devices.

● Thanks Ziwai Zhou for donating his Mi9 device.

The Art of Exploiting UAF by Ret2bpf in Android Kernel | Xingyu Jin & Richard Neal 51

Thank You for Joining Us
Join our Discord channel to discuss more or ask questions

https://discord.gg/dXE8ZMvU9J

