HITS
SECCONIF

SIN-2021

Is Attestation All We Need? Fooling Apple’s
AppAttest API

Igor Lyrchikov | H_D
Mobile Security Expert, Thales DIS

TRACK

A8 <
SECCONI-

SIN-2021

$SWhoami

 WITH THE LOCKDOWN, EVERYONE CAN REST

— \

Mobile Security Expert @ Thales DIS

"
BUT | WORK IN CYBER SECURITY!
B . ™

Penetration Tester

Information Security Researcher

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Agenda

Intro

Motivation

AppAttest Overview
Pros & Cons

Conclusion

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

I

HITB
SECCONIF

SIN-2021

Topic Coverage

*
Communication channel ng
L
Client-side Back-end

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Examples of Client-Side Protections

Anti-Tampering Obfuscation

SSL Pinning Root / JailBreak ETC
detection

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Application Tampering Definition

Tampering - is the process of changing a mobile app or its
environment to affect its behavior

. https://mobile-security.gitbook.io/
M orel nfo mobile-security-testing-guide/
general-mobile-app-testing-guide/
on M STG 0x04c-tampering-and-reverse-
engineering

Anti-Tampering - Runtime detection of the presence of an implant
or binary modification

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Popular Anti-Tampering Techniques

- Pre-computed Hash Verification
. Signing Certificate Verification
- Resource Integrity Check

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Popular Anti-Tampering Techniques

- Pre-computed Hash Verification
. Signing Certificate Verification
- Resource Integrity Check

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Possible solution?

What if we can verify the pre-computed signature/hash on our

web-server?
i Meet the AppAttest API... finally

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

AppAttest API - Definition

4

Verify your app's integrity with the new App Attest API

August 3, 2020
Part of the DeviceCheck services, the new App Attest APl helps protect against security threats to your

apps on iOS 14 or later, reducing fraudulent use of your services. With App Attest, you can generate a
special cryptographic key on a device and use it to validate the integrity of your app before your server

provides access to sensitive data. Apple

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

(o)

HITB
SECCONIF

SIN-2021

AppAttest - Definition

Your server Apple server

-~ - E - E

App attest

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

1"

How it

Apart from marketing

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Sample Demo App

Written in Flutter
Tested on iPhone 8, iOS 14.0.1

Back-end parts are hard-coded
on the client side

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

dErr4dgyaulLEgpGi+desq7CIcEQHIGXTozyYRg5eRc2g=

AgAAAFZWmagmYtxsvEb7gJUArKFEEUNKO+me89vLfv
5ZingpyOO0kgXXXyjPzYTzZWmWSu+BYqcD47byirLZ+

+3dJccpFO9hWppT7G5xAuU+y56 WpSYsAQ3E4/1nlab
OhNZMsZOAKaG5+Ac2x8QzN4V6qgO6YWsxAr+yZ5
3dSDDOcSBiHNzar+GC6FWRId383bk97E7TzJMAggA

02NmMbXRvYXBwbGUtYXBwWYXROZXNOZ2FOdFNObXS
iY391Y4JZAvwwggL4MIICfaADAgECAgYBen9cnfYwC
gYIKoZIzjOEAWIWTZEjMCEGATUEAWWaQXBwbGUgQX
BWIEFOdGVzdGF0aW9QulENBIDEXEzZARBgNVBAOMCKF
wcGxIIEluYy4xEzARBgNVBAgMCKNhbGImb3JuaWEw

13

HITB
SECCONIF

SIN-2021

3 Parties Involved

Our backend

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

14

HITB
SECCONIF

SIN-2021

Step 1

Our backend

iPhone

Remark from Apple: Must be done using un-
compromised, trusted
iOS Device on our side

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

15

HITB
SECCONIF

SIN-2021

Step 2

Our backend \
— \ W

—

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 16

HITB
SECCONIF

SIN-2021

AttestKey function

private func handleAppAttestServiceAttestKey(_ arg: [String : Any?], result: @escaping FlutterResult) {
guard #available(iOS 14.0, x) else {
result(FlutterError(code: "unavailable", message: "Only available in i0S 14.0 or newer.", details: nil))

return K d at Sten 1
} S CENEELERIEL S Anti-Replay Hash from our Backend (Step 2)

let keyId = arg["keyId"] as! String
let clientDataHash = (arg["clientDataHash"] as! FlutterStandardTypedData).data
DCAppAttestService.shared.attestKey(keyId, clientDataHash: clientDataHash) { object, error in
if let error = error {
result(getFlutterError(error))
return
}
result(object)
}
}

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 17

HITB
SECCONIF

SIN-2021

Step 3

Our backend \ ”
Step 3
Step 2, k

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 18

HITB
SECCONIF

SIN-2021

AttestationObject authenticator data

e RP ID (32 bytes) — A hash of your app’s App ID, which is the concatenation of your 10-
digit team identifier, a period, and your app’s CFBundleIdentifier value. An attestation
that an App Clip generates uses the full app’s identifier, not the App Clip’s identifier. For
information about the difference between the two, see Creating an App Clip with Xcode.

e counter (4 bytes) — A value that reports the number of times your app has used the
attested key to sign an assertion.

e aaguid (16 bytes) — An App Attest—specific constant that indicates whether the attested
key belongs to the development or production environment. Apps generate keys using the
former during development, and the latter after distribution, as App Attest
Environment describes.

e credentialld (32 bytes) — A hash of the public key part of the attested cryptographic
key pair.

CFBundleldentifier - A bundle ID uniquely identifies a single app throughout the system.

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

19

HITB
SECCONIF

SIN-2021

Step 4

A -
Step 2
\ e Y B3

Step 4 m—

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 20

HITB
SECCONIF

SIN-2021

Step 5

Step 3 /'
k

Our backend

Step 2

.. E

Step 4 m—

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 21

HITB
SECCONIF

SIN-2021

AttestationObject validation

1.

9.

Verify that the x5c¢ array contains the intermediate and leaf certificates for App Attest,
starting from the credential certificate in the first data buffer in the array (credcert).
Verify the validity of the certificates using Apple’s App Attest root certificate.

. Create clientDataHash as the SHA256 hash of the one-time challenge your server

sends to your app before performing the attestation, and append that hash to the end of
the authenticator data (authData from the decoded object).

. Generate a new SHA256 hash of the composite item to create nonce.

Obtain the value of the credCert extension with OID 1.2.840.113635.100.8.2, which
is a DER-encoded ASN.1 sequence. Decode the sequence and extract the single octet
string that it contains. Verify that the string equals nonce.

Create the SHA256 hash of the public key in credCert, and verify that it matches the key
identifier from your app.

Compute the SHA256 hash of your app’s App ID, and verify that it's the same as the
authenticator data’s RP ID hash.

. Verify that the authenticator data’s counter field equals 0.

Verify that the authenticator data’s aaguid field is either appattestdevelop if operating
in the development environment, or appattest followed by seven 9x00 bytes if operating
in the production environment.

Verify that the authenticator data’s credentialId field is the same as the key identifier.

After successfully completing these steps, you can trust the attestation object.

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

py

HITB
SECCONIF

SIN-2021

Our backend

Action

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 23

HITB
SECCONIF

SIN-2021

Server-to-Server interaction

Interpret the Metric

Field 6 of the receipt contains either the string ATTEST for the receipt that comes with an
attestation object, or the string RECEIPT for receipts that you request using your server. Only
the latter provide the risk metric in field 17. The receipt represents the metric as a string that
indicates the number of attested keys associated with a given device over the lifetime of the
device. Look for this value to be a low number.

Note that the metric can grow if a user reinstalls your app, restores from a backup, or transfers
a device to another user. For privacy reasons, App Attest keys stored on device don’t survive
these events, forcing your app to generate a new key on the same device. This growth should
be modest, but you'll have to tune your risk assessment logic based on the typical numbers that
you see over time. You can help to keep the number small by only generating new keys when
absolutely necessary.

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Our backend

Action

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 25

HITB
SECCONIF

SIN-2021

Step 8

Our backend
Step 3

Action

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 26

HITB
SECCONIF

SIN-2021

Assertion Object Validation

To verify the assertion, use the decoded assertion, the client data, and the previously stored
public key, and follow these steps:

1. Compute clientDataHash as the SHA256 hash of clientData.

2. Concatenate authenticatorData and clientDataHash, and apply a SHA256 hash
over the result to form nonce.

3. Use the public key that you store from the attestation object to verify that the assertion’s
signature is valid for nonce.

4. Compute the SHA256 hash of the client’s App ID, and verify that it matches the RP IDin
the authenticator data.

5. Verify that the authenticator data’s counter value is greater than the value from the
previous assertion, or greater than 0 on the first assertion.

6. Verify that the embedded challenge in the client data matches the earlier challenge to the
client.

When the assertion meets all of these conditions, you can trust it. Store counter to use in step
5 when verifying the next assertion.

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 27

HITB
SECCONIF

SIN-2021

What's next?

At this point AppAttest APl is
correctly implemented and works
fine. Are we finally protected from
hackers, crackers, modders and
other guys who want to mess with
our App?

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

28

HITB
SECCONIF

SIN-2021

Some Fun From Apple

You can't rely on your app's logic to perform security checks on itself because a compromised
app can falsify the results. Instead, you use the shared instance of the DCAppAttest

Before using a key pair, ask Apple to attest to its origin on Apple hardware running an
uncompromised version of your app. Because you can't trust your app’s logic to verify the
attestation result, you send the result to your server. To reduce the risk of replay attacks during

Not all devices can use the App Attest service, so it's important to have your app run a
compatibility check before accessing the service. If the user’s app doesn’t pass the
compatibility check, gracefully bypass the service. You check for availability by reading the 1s
Supported property.

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

29

HITB
SECCONIF

SIN-2021

Some Fun From Apple

Your app uses the App Attest service to assert its authenticity. A compromised version of your
app running on a genuine, unmodified Apple device can’t create valid assertions. However, an
attacker that modifies the device's operating system might bypass restrictions. Although
modifying the operating system is difficult and an unlikely source of widespread fraud, you

might need to guard against an attack that uses a single compromised device to serve
assertions to many subscribers.

While it isn't possible to detect fraudulent activity with absolute certainty, App Attest does
provide a metric to assess its likelihood. Specifically, you can get an approximate count of
unique attestations for your app on a particular device. A count that’s higher than expected
might be an indication of a compromised device that's serving multiple compromised instances
of your app. You can use this information to assess your risk.

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

" LIf 1 ignore it, maybe

it will go awa

30

HITB
SECCONIF

SIN-2021

Some Fun From Apple

What stops a compromised/fake app instance to pretend to run on 'not supported' device, report that to the app server and
that way circumvent App Attest completely?

Is there any way for the app server to verify this 'not supported' claim received from the app instance?

Security DeviceCheck

Accepted Answer

As you note, a compromised app may remove the call to the App Attest service, preventing the service from being used.

The absence of the attestation when your service expects it may be used by the service as a risk signal.

The App Attest framework is supported on iOS/iPad OS 14 and later for devices that have a SEP. As adoption of iOS 14
o increases the absence of the attestation will provide an increasingly strong risk signal.

It is also critical to follow the full verification procedure on your service to ensure any attestation received has not been
manipulated.

Posted 1 year ago by Frameworks Engineer

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

31

HITB
SECCONIF

SIN-2021

Bypass-related Scenarios

AppAttest can't AppAttest can't
detect if device is detect if App is
Already
JailBroken Tampered
prior
installation

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

AppAttest can't
detect if App is

Modified in
runtime
(hooking,
swizzling)

32

HITB
SECCONIF

SIN-2021

Bypass-related Scenarios. Case 1

Drop outgoing http connection to Apple's server

he client failed to negotiate an SSL connection to gateway.icloud.com:443: Remote host closed connection during handshake

[7] The client failed to negotiate an SSL connection to [register-development.appattest.apple.com:443: Remote host closed connection during handshake

Done either by hooking or MITM proxy

If the method, which accesses a remote Apple server, returns the serverUnavailable error,
try attestation again later with the same key. For any other error, discard the key identifier and

Possible because of incorrect handling of serverUnavailable error

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

33

HITB
SECCONIF

SIN-2021

Bypass-related Scenarios. Case 2

Return that device is not supported or current iOS version is <14

All supported iOS devices are always return true on Hook Platform API to return version less than
isSupported call, so this check might be not implemented

if the Application is released for mobile-only systems i0S 14

[VERBOSE-2:ui_dart_state.cc(199)] Unhandled Exception: PlatformException(unavailable, |Only available in i0S 14.0 or newer., null, null)

#0 StandardMethodCodec.decodeEnvelope (159717)
#1 MethodChannel._invokeMethod (:158:18)
<asynchronous suspension>

#2 _applicationState._generateToken (:36:11)

<asynchronous suspension>
[VERBOSE-2:ui_dart_state.cc(199)] Unhandled Exception: PlatformException(unavailable, |Only available in i0S 14.0 or newer., null, null)

#0 StandardMethodCodec.decodeEnvelope (:597:7)
#1 MethodChannel._invokeMethod (:158:18)
<asynchronous suspension>

#2 _applicationState._generateKey (:50:11)

<asynchronous suspension>

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor 34

HITB
SECCONIF

SIN-2021

Bypass-related Scenarios. Case 2

iIOS and iPadOS Usage

As measured by the App Store on June 3, 2021.

iPhone D

90% of all devices introduced in the last four
years use iOS 14.

i0S 14

® 90%i0S 14
® 8%i0S 13
® 2% Earlier

85% of all devices use iOS 14.

i0S 14

® 85%i0S 14
® 8%i0S 13
® 7% Earlier

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

10% of all iOS and iPadOS devices is
~00.000.000 unsupported devices

This version-related bypass will be most
efficient for some time untill iOS <14 is EOL

35

HITB
SECCONIF

SIN-2021

Bypass-related Scenarios. Case 3

Abuse incorrect parsing of AttestationObject on back-end

3dSDDOcSBiHNz

02NmbXRvY X (ROZXNOZ2FOdFNObXS
iY3g1Y4JZA 4N Ben9cnfYwC
gYIKoZIzjOE

)

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

dErrdqyauLEgpGi+desq7CIcEQHIGXxTozyYRg5eRc2g=
e EEe———l L

Nothing stops you from patchnig and re-signing
the Target App

Apple doesn't check the bundle identifier on their
side nor validates the sandbox state (JailBroken
or not)

AttestationObject will be generated anyway

36

HITB
SECCONIF

SIN-2021

Bypass-related Scenarios. Case 3

Abuse incorrect parsing of AttestationObject on back-end

AttestationObject
consist of multiple byte
arrays and different
fields

flutter: {"fmt":"apple-appattest","attStmt":{"x5c":[[48,130,2,226,48,130,2,105,160,3,2,1,2,2,6,1,123,113,128,105
112,112,108, 101,32, 65,112,112, 32,65,116, 116, 101,115, 116,97, 116, 105,111,110, 32,67, 65, 32,49,49,19,48,17,6, 3,85, 4,
\67,97,108,105,102,111,114,110, 105,97, 48, 30, 23,13, 50, 49, 48, 56,50, 50, 48,53, 51,52, 48, 54,90, 23,13, 50,49, 48,56, 50, 5
53,53,99,53,100,57,101, 98, 48,50, 101,97, 101, 50,97, 100,98, 101, 54, 54,49, 100, 51,98, 101, 50, 98,48, 97,48, 100,49, 50, 57
101,57,57,97,49,26,48,24,6,3,85,4,11,12,17, 65,65, 65,32,67,101, 114,116, 105, 102, 105,99, 97,116, 105,111, 110,49, 19,
.85,4,8,12,10,67,97,108,105,102,111,114,110, 105,97,48,89,48,19,6,7,42,134,72,206,61,2,1,6,8,42,134,72, 206,61, 3,
\,254,201,178,76,58,161,163,9,148,168,44,103,19,120,94,14,139,173, 38,59, 145, 80, 83,21, 106, 100, 82, 96,207,252, 34, 20:
,234,48,12,6,3,85,29,19,1,1, 255,4,2,48,0,48,14,6, 3,85,29,15,1,1, 255, 4,4, 3,2,4,240,48,120,6,9,42,134,72,134, 247,
191,137,59,3,2,1,1,191,137,51,3,2,1,1,191,137,52,32,4,30,52,83,78, 80, 90,90, 50,55, 88,78,46,99, 111, 109, 46, 101, 12(
191,137,54,3,2,1,5,191,137, 55, 3,2,1,0,191,137,57,3, 2,1, 0,191,137, 58,3, 2,1, 0, 48,27,6,9,42,134,72,134, 247,99, 100,
\247,99,100,8,2,4,38,48,36,161,34,4,32,195, 14,248,52,52,137, 219, 245, 14,151, 248, 101, 145, 243,69, 216, 140,138, 179, 2!
\2,3,103,0,48,100,2,48,109, 86, 154,230,191, 101, 174, 206,195, 157,66, 156,17,82,73, 212,91, 6,155,179,66, 113, 215,50, 23!
3,90,240,2,48,111, 101,118, 145,180, 238, 142, 227,155, 6,158,0,109, 144,59,72, 240,32, 21,95, 240, 106,51, 215, 238,50, 235
891, [48,130,2,67,48,130,1,200,169,3,2,1,2,2,16,9, 186,197, 225,188, 64,26,217,212, 83,149, 188,56, 26, 8,84,48,10,6, 8
101,32,65,112,112, 32, 65,116,116, 101,115,116, 97,116, 105,111, 110, 32,82,111,111, 116, 32,67, 65,49, 19,48,17,6, 3,85, 4,
\67,97,108,105,102,111, 114,110, 105,97, 48, 30, 23,13, 50, 48, 48, 51, 49, 56, 49, 56, 51,57, 53,53, 90, 23,13, 51, 48,48, 51,49, 5
101, 32,65,112,112, 32, 65,116,116, 101, 115, 116,97, 116, 105,111, 110, 32,67, 65, 32,49, 49,19, 48,17,6, 3, 85,4,10,12,10, 65,
1e02,111,114,110,105,97,48,118,48,16,6,7,42,134,72,206,61,2,1,6,5,43,129,4,0,34,3,98,0,4,174,91,55,160,119,77, 1.
,89,135,79,248,210,173,21,37,120,154,162, 102, 4, 25, 18,72, 182,60, 185, 103, 6, 158,152, 211,99, 189, 94,55, 15,191, 160, 14:
33,22,88,213,103,175,158,38,126,178,97,77,194, 26, 102,206,153, 163, 102, 48, 100, 48, 18,6, 3,85,29,19,1,1, 255, 4, 8, 48, (
190, 104,65, 255,167,12,169, 229, 250, 234,229, 229,138, 161,48, 29,6, 3,85, 29, 14,4, 22,4, 20,62, 227,93, 28,4, 25,169,201, 1
3,2,1,6,48,10,6,8,42,134,72,206,61,4,3,3,3,105,0,48,102,2,49,0,187,190, 136, 141, 115, 141,5, 2, 207, 188,253, 102, 109,
\154,232,181,174,248,211,168,84,51,247,182,13,6,2,49,0,171, 56,237, 208,204,129, 237,0, 164,82, 195, 186, 68,249, 147, 9!
,13,249,4,56,111,120,7,187,88,148,57,18311, "receipt": [48,128,6,9,42,134,72,134,247,13,1,7,2,160,128,48,128,2,1,

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

Must be properly
parsed and validated
following Apple's
guidelines

37

HITB
SECCONIF

SIN-2021

Worth it to implement or not?

CON

S
|

'\

38

HITB
SECCONIF

SIN-2021

Pros

1) Looks promising against replay attacks

2) Certain companies can benefit from implementing Fraud Metric
analysis, especially if Apple expand the list of metric data

3) Could increase anti-tampering protection as additional layer of
security by leveraging bypass complexity for already
implemented RASP checks

4) Might become industry standard once supported by 100% of
iOS devices

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

39

HITB
SECCONIF

SIN-2021

Cons

1) Not possible to validate if Application is already running on compromised device

2) If device has been JailBroken after the key attestation, all new assertions are
tampered - not possible detect it even using Apple’s fraud metric

3) Useless against application's behaviour modification with Runtime
Instrumentation Frameworks/Debugger

4) Multiple design issues - success of the implementation strongly depends on
integrator’s implementation

5) App extensions doesn’t support App Attest

6) Dependency on 3rd party - Apple's back-end server

7) Number of unsupported devices is still big

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

40

HITB
SECCONIF

SIN-2021

Worth it to implement or not?

Its necessary for the project team
to discuss all potential risks and
identify the impact and threat
model.

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

41

HITB

SECCONIF
SIN-2021
How to do it good?
S O
o JailBreak o
© : Debugger =
G Detection Detection 7
a O
= Q)
0 =
O AppAttest S
Hooking Additional
Detection Tampering Checks

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

HITB
SECCONIF

SIN-2021

Conclusion
AppAttest

- Supportive solution, yet not ready to replace traditional Anti-Tampering
mechanisms

- Might evolve in the future

- Bypass complexity is relatively easy due to multiple logical issues in its
implementation

- Recommended for integration only in experimental mode as additional
source of knowledge

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

43

HITB
SECCONIF

SIN-2021

References

Sample Project used in this talk, written in Dart/Flutter:
Example of server-side implementation, written in Kotlin:

AppAttest Service documentation:

Framework related articles worth to read:

Is Attestation All We Need? Fooling Apple’s AppAttest API | Lyrchikov Igor

Comprehensive tampering description and techniques review:

44

https://github.com/HD421/iOS-AppAttest-Playground
https://github.com/veehaitch/devicecheck-appattest
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04c-tampering-and-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04c-tampering-and-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04c-tampering-and-reverse-engineering
https://developer.apple.com/documentation/devicecheck/dcappattestservice
https://developer.apple.com/documentation/devicecheck/dcappattestservice
https://developer.apple.com/documentation/devicecheck/establishing_your_app_s_integrity
https://developer.apple.com/documentation/devicecheck/validating_apps_that_connect_to_your_server
https://developer.apple.com/documentation/devicecheck/assessing_fraud_risk
https://github.com/HD421/iOS-AppAttest-Playground
https://github.com/veehaitch/devicecheck-appattest
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04c-tampering-and-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04c-tampering-and-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04c-tampering-and-reverse-engineering
https://developer.apple.com/documentation/devicecheck/dcappattestservice
https://developer.apple.com/documentation/devicecheck/dcappattestservice
https://developer.apple.com/documentation/devicecheck/establishing_your_app_s_integrity
https://developer.apple.com/documentation/devicecheck/validating_apps_that_connect_to_your_server
https://developer.apple.com/documentation/devicecheck/assessing_fraud_risk

HITIS
SECCONIF

SIN-2021

Thank You for Joining Us

Join our Discord channel to discuss more or ask questions
https://discord.gg/dXES8ZMvU9J

