
Automated 0-day discovery in 2021:
Squashing the low-hanging fruit in

widespread embedded software

Daniel dos Santos | Shachar Menashe

TRACK 1

Forescout Research Labs | JFrog Security Research

About us

Daniel dos Santos, Research Manager @ Forescout
• Experience in security research, development and pentesting
• PhD in Computer Science, 30+ academic publications
• Speaker at Black Hat, x33fcon and others

Shachar Menashe, Sr. Director Security Research @ JFrog
• Experienced security researcher and architect
• BSc in Computer Science & Electrical Engineering
• Currently leading the security research teams @ JFrog

Co-authors:
• Stanislav Dashevskyi, Amine Amri, Jos Wetzels @ Forescout
• Asaf Karas, Denys Vozniuk @ JFrog

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 1

Outline

1. Introduction
• Research Background

• INFRA:HALT

• Finding Vulnerabilities

2. Automated Vulnerability Discovery

3. Mitigation
• Device vendors

• Network operators

4. Conclusion

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 2

Embedded Systems Supply Chain

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 3
http://smartbox.jinr.ru/doc/chip-rtos/software.htm

Device
Misconfiguration

Injected
Backdoors

Naturally
occurring

vulnerabilities

https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things

http://smartbox.jinr.ru/doc/chip-rtos/software.htm
https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things

Why target protocol stacks
• Wide deployment – vulnerabilities trickle down the

supply-chain to many vendors

• Absence of Software Bill of Materials (SBOM) - fixes in
core stack might never make it to all OEM firmware

• Ancient code – good chance of finding exploitable bugs

• Externally exposed, often run as privileged, low-level
component

• Patching issues + Long lifespans + Broad trickle-down =
High vulnerability lifespan = High attacker ROI

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 4

Previous work on TCP/IP stacks

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 5

Dec. 2020 Feb. 2021 May 2021 Aug. 2021

Year Research Description

2019 URGENT/11 11 CVEs on VxWorks’ IPnet

2020 Ripple20 19 CVEs on Treck TCP/IP

2020 AMNESIA:33 33 CVEs in 4 open-source stacks

2021 NUMBER:JACK Predictable TCP ISN in 9 stacks (open and closed)

2021 NAME:WRECK 9 DNS client vulnerabilities in 4 stacks

2021 INFRA:HALT 14 CVEs on InterNiche stack

INFRA:HALT

Vulnerabilities in the InterNiche
embedded TCP/IP stack

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 6

The target: What is NicheStack?

• Developed by InterNiche in the ‘90s, acquired by
HCC Embedded in 2016

• Distributed in several flavors (IPv4, v6, dual, lite)

• Served as basis for other stacks (e.g., emNet)

• Popular in OT devices – previous research:
• Siemens: CVE-2019-9300, SegmentSmack variant

affecting several devices
• Abbasi et al.: looking at S7 PLCs, found and compiled

stack source-code leaked via OEM

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 7

https://ww1.microchip.com/downloads/en/Site_Resource/NicheStack%20IPv4-ProductBrief.pdf

https://us-cert.cisa.gov/ics/advisories/icsa-20-105-08
https://i.blackhat.com/eu-19/Wednesday/eu-19-Abbasi-Doors-Of-Durin-The-Veiled-Gate-To-Siemens-S7-Silicon.pdf
https://ww1.microchip.com/downloads/en/Site_Resource/NicheStack%20IPv4-ProductBrief.pdf

The vulnerabilities found

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 8

CVE Impact CVSS Component Affected

1 CVE-2020-25928 Remote Code Execution 9.8 DNS client

2 CVE-2021-31226 Remote Code Execution 9.1 HTTP server

3 CVE-2020-25767 Denial of Service 7.5 DNS client

4 CVE-2020-25927 Denial of Service 7.5 DNS client

5 CVE-2021-31227 Denial of Service 7.5 HTTP server

6 CVE-2021-27565 Denial of Service 7.5 HTTP server

7 CVE-2020-35683 Denial of Service 7.5 ICMP

8 CVE-2020-35684 Denial of Service 7.5 TCP

9 CVE-2021-31400 Denial of Service 7.5 TCP

10 CVE-2021-31401 Denial of Service 7.5 TCP

11 CVE-2021-36762 Denial of Service 7.5 TFTP server

12 CVE-2020-35685 TCP spoofing 7.5 TCP

13 CVE-2020-25926 DNS cache poisoning 4 DNS client

14 CVE-2021-31228 DNS cache poisoning 4 DNS client

• 14 CVEs

• 5 components affected
• DNS client
• HTTP server
• ICMP
• TCP
• TFTP server

• 2 RCEs
• CVE-2020-25928 (DNS)
• CVE-2021-31226 (HTTP)

• Found manually and/or automatically

RCE1: CVE-2020-25928 (DNS)

• Found manually, based on anti-pattern
from NAME:WRECK

• Similar to CVE-2020-27009 on Nucleus
NET

• Resource Record length (RDLENGTH)
of DNS responses is not checked

• Attackers can specify arbitrary
RDLENGTH and overflow next field
(RDATA)

• A buffer for RDATA is allocated on the
heap

• There are usually no exploit mitigations

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 9

Exploiting CVE-2020-25928

• Achieved RCE with the classical
“unlink” technique
• No safe unlinking

• Easy for attackers to spoof DNS
records
• Source port and TXID aren’t random

• CVE-2020-25926, CVE-2021-31228

• responses from any IP address are
accepted

• Shellcode uses the stack API to
perform TCP handshake and send
further malicious packets

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 10

NAME NAME = test.com

TYPE TYPE = 0x000c (12)

CLASS CLASS = 0x0001 (IN)

TTL TTL = 0x00a (10)

RDLENGTH RDLENGTH = 0x0191 (401)

RDATA !!SHELLCODE!!

RCE2: CVE-2021-31226 (HTTP)
• Found automatically – more details later

• Occurs when parsing the HTTP POST Request URI field: http://example.org/path/to/file?param42

• A request string of more than 52 bytes may cause a (heap) buffer overflow

• RCE can be achieved similar to CVE-2020-25928 (more careful heap shaping required)

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 11

Attack scenario

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 12

HVAC system (e.g.,
industrial fan)

Internal PLC controlling an
HVAC

Exposed device
vulnerable to
INFRA:HALT

0. Device sends a DNS Request

1. Send a forged DNS Response (with shellcode) instructing the Device 1 to send a malicious packet to the PLC

2. Send malicious
packet

3. PLC crashes, the physical
process is disrupted

https://www.youtube.com/watch?v=plgtt1BD-nI

https://www.youtube.com/watch?v=plgtt1BD-nI

Supply Chain Impact

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 13

Many offerings

…via many distributors…

…end up in many ways in many
products from many vendorshttps://web.archive.org/web/20170213060851/http://www.iniche.com:80/company/manylogos.php

https://web.archive.org/web/20170213060851/http:/www.iniche.com:80/company/manylogos.php

Finding the vulnerabilities
• Input

• Leaked source code of v3.1 (as mentioned in previous research)
• Binary demo of more recent version (previously available on vendor’s website)

• Manual analysis based on known anti-patterns
• AMNESIA:33 – integer overflows, lack of bounds checks
• NUMBER:JACK – weak ISN
• NAME:WRECK – DNS compression and several others – see https://github.com/Forescout/namewreck

• The stack matched almost all the known anti-patterns
• Didn’t analyze IPv6 – not available in the source
• Great result, but lots of work and potentially missed issues…

• …enter automated Vulnerability Discovery

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 14

https://github.com/Forescout/namewreck

Automated Vulnerability Discovery

Overcoming the limitations of manual research

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 15

Method of operation – high level

• #1 – Map possible user input sources

• #2 – Map possible dangerous sinks

• #3 – Find unfiltered data flow between #1 & #2

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 16

getenv()

BasicBlock a

BasicBlock b

BasicBlock c

Call function
A system()

function A

BasicBlock g

BasicBlock e

SOURCE SINK

BasicBlock f

Method of operation - detailed

17

Code Information flow

Le
ve

l
Ex

am
p

le

Argument of system() in f
is calculated from output of
recv() in g

Correspondence between
inputs and outputs

f(“Hello”) = 5

Le
ve

l
Ex

am
p

le

Known functions

f is strcpy
g is malloc

Intermediate
representation

Interfaces of code blocks
Influence maps of interfaces

f:a -> b
b is a buffer accumulated in a loop
Loop condition depends on a

Higher level analysis – Ghidra P-Code

• Ghidra’s decompiler lifts ASM to high-level IR

• This allows for easier, cross-architecture analysis

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 18

mov.w r1,#0x0
mov.w r2,#0x14
bl memset
movw r3,#0x3a38
movt r3,#0x2000
mov.w r2,#0x0
tr r2,[r3,#0x0]=>to_netmain
movw r3,#0x3a3c
movt r3,#0x2000
mov.w r2,#0x0
tr r2,[r3,#0x0]=>to_nettick
movw r0,#0xc4c
movt r0=>netmain_nt ,#0x2000
bl cli_install_menu

memset(&rcvdq,0,0x14);
void *to_netmain = NULL;
void *to_nettick = NULL;
cli_install_menu(&netmain_nt);

Original source

Disassembly

(unique, 0x1000004c, 4) PTRSUB (const, 0x0, 4) , (const, 0x20003f0c, 4) // &rcvdq
--- CALL (ram, memset, 8) , (unique, 0x1000004c, 4) , (const, 0x0, 4) , (const, 0x14, 4)
(ram, 0x20003a38, 4) COPY (const, 0x0, 4) // *to_netmain = NULL
(ram, 0x20003a3c, 4) COPY (const, 0x0, 4) // *to_nettick = NULL
(unique, 0x10000030, 4) PTRSUB (const, 0x0, 4) , (const, 0x20000c4c, 4) // &netmain_nt
--- CALL (ram, cli_install_menu, 8) , (unique, 0x10000030, 4)

Decompilation

OUTPUT P-CODE INPUT 1 INPUT 2

Mapping user input sources

• Usually harder than mapping sinks

• High-accuracy sources
• Syscalls – recv (network), getenv (local), fread (local)
• Reading from well-known input MMIO (ex. UART, BLE)

• See Ghidra SVD-Loader

• Score-based sources
• ntohs / ntohl (assumes this converts network integers)

• Note these can often be inlined!

• Functions that reference well-known protocol strings
• In this case, return value and all arguments and will be treated as sources

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 19

https://github.com/leveldown-security/SVD-Loader-Ghidra

Example of protocol excerpts

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 20

HTTP

• More encountered strings = higher confidence score

v10 = command(L"USER %s");
v11 = GetProcessHeap();
...
v10 = command(L"PASS %s");
v14 = GetProcessHeap();
...
v10 = command(L"ACCT %s");

FTP

pcVar6 = stristr(pcp,"Content-Length:");
if (pcVar6 == (char *)0x0) {

ht_senderr(hp,400,"Content-length required");
hp->state = 8;
return;

}
lVar7 = atol(pcVar6 + 0xf);
hp->contentlen = lVar7;
if ((hp->rxsize - (int)(pcVar4 + -(int)pcVar9) < hp-
>contentlen) &&

(pcVar5 = stristr(pcVar5,"multipart/form-
data"), pcVar5 == (char *)0x0)) {

Mapping sinks

• Basic sinks
• Command injection – system / popen etc.

• Buffer overflow – memcpy / strcpy etc.
• In memcpy case, check that both source and length are user-controlled

• Advanced sinks
• Inline copy operations / copy loops

• Integer overflow leading to buffer overflow

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 21

while (1)
{

cur = src + 1;
if (cur2 == '@')

break;
++src;
dst[v3] = cur2;
cur2 = (unsigned __int8)*cur;
++v3;
if (!*cur)

goto exit_loop;
}

libc detection via emulation
• libc might be statically linked (ex.

RTOS binary blob)

• This means – no function symbols!

• But we need function names such
as “strcpy” for our sinks

• Our solution – function divination
via emulation

• Inputs
• Expected function prototype
• Set of matching inputs & outputs

• Outputs
• All functions with matching behavior

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 22

Data flow analysis – Ghidra’s API

• Ghidra provides basic intra-function DFA

• ex. getForwardSlice / getForwardSliceToPCodeOps

• Doesn’t handle stack variables

• Does not propagate outside of function or into child functions
Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 23

https://ghidra.re/ghidra_docs/api/ghidra/app/decompiler/component/DecompilerUtils.htmlgetForwardSliceToPCodeOps(ghidra.program.model.pcode.Varnode)

Data flow analysis – expanding on Ghidra

• Do any of the defined source variables “reach” a sink function?

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 24

source

int cs1(int* a) {
int d;
source(&d);
f2(&d, a);

}

source

int f2(int* a, int* b) {
*b = *a;

}

source

cs1

?
?

?

f2 f2

Data flow analysis – basic filtering

• Specific operations in the data flow path can make the
vulnerability unexploitable

• Classic examples of these can be statically detected
• Buffer overflow – size checks

• Command injection – shell metacharacter filtering

• General – data anchoring

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 25

char *res = strpbrk(userinput, "*;`${}|&<>");
if (NULL != res) {

// Shell metacharacter detected!
return ERR;

}

char buf[50];
if (strlen(userinput) >= 50) {

return ERR;
}
strcpy(buf, userinput);

char buf[50];
if (strcmp(userinput, "fixed_input")) {

return ERR;
}
// userinput == “fixed_input”
strcpy(buf, userinput);

Advanced filtering with symbolic execution

• Filtering may be too exotic to detect via a fixed list of static cases

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 26

Advanced filtering with symbolic execution

• Very compute intensive, must be restricted to pre-observed code
blocks from static analysis

• Last line might have many constraints
• strlen(userinput) == 3 && userinput[1] = ‘A’ etc.

• Add a custom constraint and check for satisfiability
• userinput[i] = ‘`’ for i in strlen(userinput)

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 27

char *userinput = getenv("UNSAFE_VAR"); // No constraints on userinput
... // A lot of processing on userinput
system(userinput); // Many constraints on userinput

Detecting CVE-2021-31228

• HTTP server DoS

• Signed comparison leading to (huge) overflow

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 28

char * getbndsrch(htupload *htup,char *cp,int len,int *err)
{

if (len < htup->boundarylen) { // Signed comparison!
memcpy(htup->pbuf,cp,len);
...

Detecting CVE-2021-31228 (2)

• Source detection – through dynamic stdlib mapping (atol)

• Source function “ht_readmsg” also flagged due to HTTP strings

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 29

void ht_readmsg(httpd *hp)
{

...
pcVar6 = stristr(pcp,"Content-Length:");
...
lVar7 = unknown_func(pcVar6 + 0xf); // Actually "atol". Parse "Content-Length"
hp->source_field = lVar7; // Mark the field as having user input
if ((hp->rxsize - (int)(pcVar4 + -(int)pcVar9) < hp->contentlen) &&

(pcVar5 = stristr(pcVar5,"multipart/form-data"), pcVar5 == (char *)0x0)) {
...

}

Advantage of dynamic divination

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 30

long unknown_func(_reent *rptr,char *nptr,char **endptr,int base)
{
pbVar5 = (byte *)nptr;
do {

pbVar2 = pbVar5;
pbVar5 = pbVar2 + 1;
uVar7 = (uint)*pbVar2;
bVar9 = __ctype_ptr__[uVar7 + 1] & 8;

} while (bVar9 != 0);
if (uVar7 == 0x2d) {

uVar7 = (uint)*pbVar5;
bVar9 = 1;
pbVar6 = pbVar2 + 2;

}
else {

pbVar6 = pbVar5;
if (uVar7 == 0x2b) {
pbVar6 = pbVar2 + 2;
uVar7 = (uint)*pbVar5;

}
}
if (base == 0) {

if (uVar7 != 0x30) {
base = 10;
goto LAB_00438748;

Detecting CVE-2021-31228 (3)

• “hp” struct and fields tracked via DFA through multiple functions

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 31

ht_readmsg getbndsrchwbs_multidatawbs_postwbs_loop

(Data Reference)

Detecting CVE-2021-31228 (4)

• Eventually a memcpy sink is reached (there are two)

• Vulnerability classified as signed comparison
• Without “if” check -> classified as heap overflow

• With unsigned “if” check -> classified as non-vuln

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 32

char * getbndsrch(htupload *htup,char *cp,int len,int *err)
{

if (len < htup->boundarylen) { // Signed comparison
memcpy(htup->pbuf,cp,len); // Buffer overflow sink
...

Mitigation

What can we do about these widespread vulnerabilities?

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 33

For device vendors

1. Enable common vulnerability mitigations
• Safe unlinking

• Stack canaries

• ASLR

• FORTIFY_SOURCE

2. Employ SAST and DAST scanning solutions
• As shown, some issues can be found automatically

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 34

B->Flink->Blink == B->Blink->Flink == B

For network operators

1. Know what is on your network
• Assess risk upon connect and

continuously
• Patch devices if possible

2. Segment to mitigate risk

3. Monitor the network for malicious
packets

• Vulnerabilities in TCP/IP stacks tend
to be very similar

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 35

Affected

component
Mitigation Recommendation

DNS client

• Disable the DNS client of the device if possible and not

needed

• Block DNS traffic if not needed

• Using internal DNS servers is not sufficient because there

are several vulnerabilities that facilitate DNS spoofing

attacks

HTTP / TFTP
• Disable HTTP / TFTP server of the device if not needed

• Whitelist connections and block others

TCP
• Monitor traffic for malformed IPv4/TCP packets

• Drop these malformed packets at firewalls

ICMP
• Monitor traffic for malformed ICMPv4 packets

• Drop these malformed packets at firewalls

Conclusion

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 36

Discussion

• Vulnerability finding today: manual + automated
• Automated can find low-hanging fruits much easier and faster
• Manual still useful for more complex issues

• More vulnerabilities means more vulnerabilities to disclose
• INFRA:HALT took 9 months
• Currently, there is very limited involvement of asset owners

• Identifying vulnerable devices without firmware analysis is challenging
• Lack of SBOM, opaque documentation, few network banners, etc.
• Some vendors still investigating impact of AMNESIA:33 almost a year after initial

disclosure

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 37

Key takeaways

• TCP/IP stacks have critical vulnerabilities that trickle down the supply chain
• Other popular software components could have similar impact

• Automated vulnerability discovery helps in identifying many of those at a large-scale
• Turning point for the community, soon even more vulnerabilities will be found even faster

• Mitigation of these widespread issues involves both device vendors and network
operators
• Since they affect legacy but active devices, just waiting for patches is not a good solution

• Learn more at
• Forescout’s Project Memoria
• JFrog’s blog

Automated 0-day discovery in 2021 | Daniel dos Santos & Shachar Menashe 38

https://www.forescout.com/research-labs/project-memoria/
https://jfrog.com/blog/infrahalt-14-new-security-vulnerabilities-found-in-nichestack/

Thank You for Joining
Us

Join our Discord channel to discuss more or ask questions

https://discord.gg/dXE8ZMvU9J

