
Securing Webviews
&

The Story Behind CVE-2021–21136

Imdad | Shiv

TRACK 2

Security Engineer,
Grab

Senior Associate,
JP Morgan Chase

The techniques to secure Webviews and the journey on CVE-2021–21136

$whois shiv

1

Shiv Sahni
● Senior Associate, JP Morgan Chase

● Contributor in OWASP MSTG

● Author-The Grey Matter of Securing Android Applications

● OSCP, CREST(CRT/CPSA), AWS ASA certified security engineer

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

https://mobile-security.gitbook.io/mobile-security-testing-guide/general-mobile-app-testing-guide/0x04g-testing-cryptography
https://dl.packetstormsecurity.net/papers/general/The_Grey_Matter_of_Securing_Android_Applications_v1.0.pdf
https://twitter.com/shiv__sahni
https://www.linkedin.com/in/shivsahni/
https://shivsahni2.medium.com/

$whois imdad

2

Imdadullah Mohammed
● Security Engineer, Grab.

● Leading the application security initiative for the various
engineering teams..

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

https://twitter.com/imdadvs
https://www.linkedin.com/in/imdadullah-mohammed/

Any opinions or personal views expressed belongs to us and
not to our employer

3Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

Table of Contents
1. Introduction to CVE and

Webview

2. Journey on CVE-2021-201136

3. In-depth Analysis

4. Common Webview Security
Issues

5. Learnings & Recommendations

4Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

5

Introduction to
CVE and
Webview

6

Common Vulnerability Exposure
CVE, short for Common Vulnerabilities

and Exposures, is a list of publicly

disclosed computer security flaws.

When someone refers to a CVE, they

mean a security flaw that's been

assigned a CVE ID number.

Hello World!

CVE-2021-21136
During security research we found that a

mobile application is leaking sensitive data

in headers to a third-party. This kickstarted

the research behind identifying a security

issue in Android Chromium webview

leading to leakage of auth tokens to

third-parties.

Let’s know what is a CVE and understand the high level details of CVE-2021-21136

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

7

Introduction to Webview

Dedicated web browser instance of an application allows
to display web content directly in the application

Webviews are used extensively currently in the polyglot
architectures

Webview and its applications in modern mobile application development

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

8

Loading Web Content
Loading web content in webview(Normal Load)

We can load the web content using Webview#loadUrl method as shown below:

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

9

Loading Web Content
Loading web content in webview(Authenticated Load)

Android also provides an overloaded version of Webview#loadUrl method which lets us pass
additional request headers such as auth headers to the request as shown below:

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

10

Deeplinks
An introduction to deeplinks and how an improved user experience through deeplinks could
affect security if implemented insecurely

Deep links are specific URIs(Uniform Resource Identifiers)
that are handled by our application to improve the user
experience

For example, fb://profile/33138223345 is a deep link, the
URI contains all the information needed to launch directly
into a particular location within the Facebook mobile app,
in this case, the profile with id ‘33138223345’

Talk Title | Speaker Name here. Can change this on footer menu

11

Journey on
CVE-2021-201136

oAuth Use Case

12

GET
/oauth/config?client_id=<client_id>&r
edirect_url=<third-party_url>

 Identity ServiceMobile Application Third-Party
Service

Auth Token sent in header

Verify Auth token and
generates id_token
for the third-party

Redirect to <third-party_url> along with id_token

returns id_token

Understanding oAuth flow in mobile applications

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

The Bug

13

GET
/oauth2/config?client_id=<client_id>
&redirect_url=<third_party_url>

 Identity ServiceMobile Application
 Third Party Service

Auth Token sent in header

Verify Auth token and
generate id_token for
the third-party

Redirect to <third_party_url> along with id_token

User’s Auth Token exposed to
Third-party

returns id_token

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

14

Initial Observation
The story behind leakage of auth tokens to third-parties!

During our security research we observed that in Android webviews if a
webpage is loaded with some additional headers
using loadUrl(String url, Map<String,
String>additionalHttpHeaders)then it sends the additional
headers to any other requests triggered in the process of loading the URL
such as redirects.

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

15

Timeline
The Journey on Chromium CVE 2021-21136

A Initiated the analysis with suspected zero day
in Android webviews & reported to Google

 Initial observation
Suspected issue in Chromium

August, 2019 December, 2019

 Deep Down Investigation

January, 2020

It seems intended behavior and
would need more time for thorough
analysis

 Response from Google

February, 2020

 Google Accepted
 Need more time to fix.
 Compatibility issue

November, 2020

 Official Fix Released
 in Chromium 88

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

16

In-depth Analysis

17

 Frontend : Android app
 I want DEMO!

An Android webview component. The component loads the webpage with
additional header (Authorization)

Reference: https://github.com/shivsahni/OhMyInsecureWebview

String URL = extras.getString("URL");
String auth= extras.getString("Authorization");

if (URL != null && auth!=null) {
 webView.loadUrl(URL);
 Map<String, String> headers = new HashMap<>();
 headers.put("Authorization", auth);
 WebViewClient wc= new myWebClient();
 webView.setWebViewClient(wc);
 webView.loadUrl(URL, headers);

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

18

Backend : Python Server
 I want DEMO!

Python Webserver: The loaded webpage is expected to return a HTTP-302 redirect response.

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

19

Token leakage in header
Authorization header is sent to the redirected request as shown in Burpsuite (HTTPS Proxy)

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

20

Demo! Demo! Demo!

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

21

https://docs.google.com/file/d/1LtgEvZSFWsXLCFlzodCQvasgCH_9-Oom/preview

2222

Rollout Plan & Official Fix!
https://chromium.googlesource.com/chromium/src.git/+/6e46cca3ee484bac0cdb5d4bdae69a18857f8efd

Remove any extra headers from the request if the request is redirected to a different origin, since they might
be sensitive.

 Record metrics on when we add headers and what was done with them on redirect.

 Add an additional test verifying that the extra headers are cleared if the app loads the same URL
 again via loadUrl(url).

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

23

Common
Webview Security

Issues

24

Common Webview Related Security Issues
Let’s understand some common webview related security issues

Lack of URL Validation

Insufficient URL Validation

Unintended Leakage of Sensitive Data to Third-parties

Insufficient Webview Isolation/Loading Untrusted Content

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

25

Triggering URL Load in Webviews
User Experience and Security Tradeoff

● Improved User Experience
● Code Reuse
● Security

Once Deeplink/Intent is triggered, it opens URL in the
webview component

Deeplink:
sampleapp://open?screenType=WEBVIEW&webviewUrl=
<urlToOpen>
Vanilla Intents:
am start -n <packageName>/.<componentName> --es
urlParam <urlToOpen>

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

26

Load of Arbitrary Web Content Due to
Misconfigured Webviews
AKA Insecure Deeplink Implementation-No URL Validation

For example if an application acknowledges the following deep link
webviewdemoapp://issue=1&url=https://scripts.shivsahni.com/testsample.html

//parse URL from deeplink
--
/*deeplinkURL=https://scripts.shivsahni.com/testsample.
html/*
--
webView.loadUrl(deeplinkURL);
--

27

Demo-No URL Validation
Loading the URL directly into the webview component?

Reference: https://github.com/t4kemyh4nd/vulnwebview

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

Demo URL Link: https://drive.google.com/u/0/uc?id=1Rbfu-spHxY1Dws8XzmW4Y_TPWBDU83QT

https://docs.google.com/file/d/1bbLT4NnXaRDqbb3uYMpM-e-GJ47teeQ1/preview
https://drive.google.com/u/0/uc?id=1Rbfu-spHxY1Dws8XzmW4Y_TPWBDU83QT

28

Insufficient URL Validation
Insecure Deeplink Implementation-Insufficient URL Validation

For example if an application acknowledges the following deep link
webviewdemoapp://issue=1&url=https://scripts.shivsahni.com/testsample.html

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

29

Insufficient URL Validation-Example
Exploit! Exploit! Exploit!

Through the crafted URL in the Deeplink the validation could be bypassed resulting in arbitrary load of
malicious scripts

In the scenario wherein the webview is privileged(JS Bridges), it could even lead to exfiltration of auth
tokens
The issue was fixed in API level 28. However, API 27 and below are still vulnerable to such attacks

Read more here: Golden techniques to bypass host validations in Android apps by Bagipro
Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

https://hackerone.com/reports/431002

30

Escalating The Impact
From Insecure URL Validation to Exfiltration of User’s Auth Tokens

The Impact majorly depends on the privileges of the webview component under attack. The webview could
be having the following privileges:

Read more here: Golden techniques to bypass host validations in Android apps by Bagipro

Executing JavaScript

Access JavaScript Interfaces/Bridges(Allowing JavaScript to execute Native Code)

Access to other application components such as Content Providers, Local Storage, etc.

setAllowUniversalAccessFromFileURLs: Sets whether cross-origin requests in the
context of a file scheme URL should be allowed to access content from any origin

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

https://hackerone.com/reports/431002

31

Unintended Data Leakage
How we could be sharing user’s PII/sensitive information to third-parties unintentionally

Authenticated load to third-party domains

Authenticated load with JWT in query string

Leakage of JWT in Referer header

32

Leaking Token in Referer Header
Unintended Data Leakage

GET /gtm.js?id=GTM-TSGF649 HTTP/1.1
Host: www.googletagmanager.com
Referrer:
https://myapp.com/?id_token={id_token}
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

33

Authenticated Loads to Third-Party Domains
Unintended Data Leakage

GET /oauth2/authorize HTTP/1.1
Host: www.third-party.com
Authorization: {JWT}
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: close

HTTP/1.1 302 Found
Date: Fri, 27 Aug 2021 09:44:33
GMT
Content-Type: text/html;
charset=utf-8
Content-Length: 50
Connection: close
Location:
https://third-party.com/init/sta
rt

Auth Token exposed to
third-party

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

34

Authenticated Loads with JWT in Query String
Unintended Data Leakage

GET /?authToken={token} HTTP/1.1
Host: myapp.com
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: close

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

35

Lack of Webview Isolation
An introduction to Custom Chrome Tabs and Safari View Controller

Are you loading third-party websites in the webview instance
of your application?

Is that webview instance privileged? JavaScript Enabled/JS
Bridges?

What happens if there is breach of trust or the third-party is
compromised?

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

36

Learnings &
Recommendations

37

Secure URL Validation
Let’s Secure Android Webviews!

For example if an application acknowledges the following deep link
webviewdemoapp://issue=1&url=https://scripts.shivsahni.com/testsample.html

private fun validateURL(urlString: String):Boolean
{
 try {
 URL urlObject= new URL(urlString);

if((urlObject.getAuthority()=="shivsahni.com")&&(urlObject.getSc
heme()=="https"))
 return true;
 }
 catch (MalformedURLException e)
 {
 e.printStackTrace();
 return false;
 }
}

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

38

Secure URL Validation
Let’s Secure iOS Webviews!

It is highly recommended to check a URL against a whitelisted domain and explicitly match with
urlComponents.scheme, urlComponents.host

//Swift code
func validateURL(url: URL) -> Bool {
 guard let urlComponents = URLComponents(url: self,
resolvingAgainstBaseURL: false),
 urlComponents.scheme == "https://" &&
urlComponents.host == "myapp.com" else {
 return false
 }
 return true
}

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

39

Webview Isolation
An introduction to Custom Chrome Tabs and Safari View Controller

Chrome Custom Tabs and Safari View Controllers are what we recommend when browsing 3rd party sites,
as the loaded web content is being executed under the chrome process, it minimizes the risk of malicious
javascript accessing application’s non-exported services.

Chrome Custom Tabs and Safari View Controller will embed the browser into the native app, to make
transitions between native and web content more seamless without having to resort to a WebView.

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

40

Defence in Depth
Let’s harden Android webviews!

Disable implicit access to Content Providers: setAllowContentAccess()

Disable implicit access to Local Storage: setAllowFileAccess()

Reduce sensitive data exposure by flushing webview cache whenever webview component is no
longer required: clearCache()

Ensure that the JS is not unnecessarily enabled, in case the JS execution is required make sure that it
is coming from trusted source over a secure channel: setJavaScriptEnabled()

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

https://developer.android.com/reference/android/webkit/WebView#clearCache%28boolean%29

41

Defence in Depth: Risk of using UIWebView?
Let’s harden iOS webviews!

UIWebView is deprecated on iOS 12. The App Store does not accept new apps or updated to existing
apps that use UIWebView. https://developer.apple.com/news/?id=edwud51q

Security-sensitive settings are enabled by default

Javascript cannot be disabled.

https://developer.apple.com/news/?id=edwud51q

42

Defence in Depth: Why use WKWebview?
Let’s harden iOS webviews!

Although JavaScript is enabled by default, it can be disabled using javaScriptEnabled property.

The hashOnlySecureContent property can be used to verify resources loaded by the WebView are retrieved
through encrypted connections.

While using allowingReadAccessToURL do not give access to local storage directory rather specify the file
to be accessed by webview.

Security-sensitive settings such as allowFileAccessFromFileURLs & allowUniversalAccessFromFileURLs
are disabled by default

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

https://developer.apple.com/documentation/webkit/wkpreferences/1536203-javascriptenabled
https://developer.apple.com/documentation/webkit/wkwebview/1415002-hasonlysecurecontent

43

Follow the principle of least privileges while configuring
webviews. For example, only enable JS if explicitly required.

Use Chrome Custom Tabs/Safari View Controllers wherever
possible to load untrusted content(third-party web content, etc.)

If your webview is programmed to load the URL in deeplink
ensure the URL is validated before the load

While validating the URL before loading in the webview,
explicitly match against URL authority and protocol

While doing a third-party integration make sure no sensitive
user information is shared unintentionally.

KEY
TAKEAWAYS

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

44

Honorable Contributors

Movnavinothan V and Changmook Lim for helping us during the analysis to come up

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

45

References

Carnegie Mellon University-Webview Secure Coding Practices

Leakage of Sensitive Data Through Android Webviews

OWASP Mobile Security Testing Guide

Bypassing Webview Host Validation-Bagipro

Unintended Data Leakage Through HTTP Request Headers

Building Safe URL in Swift

Securing Webviews & The Story Behind CVE 2021-21136 | Imdadullah Mohammed & Shiv Sahni

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87150638
https://infosecwriteups.com/leakage-of-sensitive-data-through-android-webviews-3b0b86486a28
https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://hackerone.com/reports/431002
https://bugs.chromium.org/p/chromium/issues/detail?id=1038002
https://medium.com/swift2go/building-safe-url-in-swift-using-urlcomponents-and-urlqueryitem-alfian-losari-510a7b1f3c7e

Thank You for Joining
Us

Join our Discord channel to discuss more or ask questions
https://discord.gg/dXE8ZMvU9J

