
trapfuzzer：
coverage-guided binary fuzzing  with     
breakpoint

Sili Luo| @hac425

TRACK 2

https://twitter.com/hac425/


About Me

• Security Researcher at Huawei RO0T Lab

• Focus on software vulnerability research

• Github: https://github.com/hac425xxx

• Twitter: https://twitter.com/hac425/

• Blog: https://www.cnblogs.com/hac425

https://github.com/hac425xxx
https://twitter.com/hac425/
https://www.cnblogs.com/hac425


Outline

1.Background

2.Implementation of trapfuzzer

3.How to Fuzz with trapfuzzer and results

4.Future Plans 



Background



What is Fuzzing?



What is Coverage-Guided Fuzzing?



https://googleprojectzero.blogspot.com/2020
/04/fuzzing-imageio.html

http://www.powerofcommunity.net/poc20
18/jaanus.pdf

Background

https://googleprojectzero.blogspot.com/2020/04/fuzzing-imageio.html
http://www.powerofcommunity.net/poc2018/jaanus.pdf


Inspiration 
Combining my previous fuzzing experience and these two security research, I realized:

1. The existing excellent Fuzz tools (AFL, honggfuzz) are not perfect, and there are still unsupported or 

incompletely supported scenarios, such as complex large, closed-source programs and some new platforms.

2. Using relatively inefficient instrument methods for fuzz testing can also obtain better results than 

complete black box fuzz testing, such as instruments with breakpoints.

I found that fuzzing tools for large closed-source Linux software are rare, commonly used linux fuzzing 

tools are Peach and AFL, they have some shortcomings:

1. Peach: fuzzing without coverage information.

2. AFL Qemu Mode: only suitable for relatively small programs, such as image parse library.

So I decided to develop a fuzzer based on a breakpoint mechanism to support some scenarios that are not 

covered by existing tools, such as large, closed-source file parsing programs and provide coverage support.



Implementation
(Version 0.1)



Overview

Fuzz Scheduler

Trace Module

Patched Application

...seeds Seed Mutation
seed input

Add input to seeds if new path found

binary patcher

Patch



binary patcher

1. Use IDAPython script to get all basic blocks of binary

2. Replace the first instruction of every basic blocks with breakpoint instruction and save the 

original instruction to basic-block-info-file.

liba.so

libx.so

libb.so

patched liba.so basic block info file

patched libb.so

patched libx.so

basic block info file

basic block info file



binary patcher – basic-block-info-file example



binary patcher - example

breakpoint instruction in x86 



binary patcher - example

unpatched

patched



Seed Mutation

RadamsaMutator

use radamsa to generate mutated testcases

https://gitlab.com/akihe/radamsa

TinyMutator

1.support basic mutation strategies, such as byte 

flipping and random insertion of boundary values 

(such as 0xFFFFFFFF) .

2.supporting config the variation ratio of mutation.
data mutate example

https://gitlab.com/akihe/radamsa


Fuzzer Module

1. First load the initial testcases to seed queue and do corpus distillation on seed queue.
2. Then it will traverse the seed queue, mutate the testcase, then use the trace module to start 

the target process, finally get the coverage and execution status of the process.

3. If new coverage is found, the new testcase will be added to the seed queue.

4. If crash is found, the crash information is saved, such as registers, stack trace.

• The score of testcases that discover new coverage will increase

• The score of testcases that trigger DOS will decrease

Scheduling strategies

Workflow



Fuzzer Module - Corpus Distillation  
The workflow of corpus distillation is as follows:
1. let the program process the testcases in the seed queue one by one.
2. then only save the testcases that can generate new coverage.

TestCase 1

A B C D

TestCase 2

A C E

TestCase 5

A B D F

TestCase 1

A B C D

TestCase 3

B D

TestCase 2

A C E

TestCase 4

A D E

TestCase 5

A B D F

original seed queue seed queue after distillation



Trace module - Theory

Execution

1. Catch 0xCC exceptions

2. Record location

3. Replace 0xCC with original value

4. Let process continue

Prep

• Use bb-patcher module.

• Replace the first instruction of basic block with breakpoint instruction (0xcc)



Trace module #1 (PythonPtraceTracer)
1. First use create_and_attach_process to create the target process

2. Use cont to let the process continue, and use waitSignals to wait for the process to trigger 

signals, such as SIGABORT, SIGTRAP.

3. If the process triggers the SIGTRAP signal, record the value of the PC at this time and replace 

the breakpoint instruction with the original instruction

4. then let the process continue to execute, goto 2

Python-ptrace Target process

ptrace

trigger SIGTRAP

• restore original instruction
• let process continue



Lets Fuzz WPS
WPS is an office processing software in China that supports viewing and editing DOC, 
XLS, PPT and other files

• trapfuzzer collect coverage by patch breakpoint instruction to target module
• therefore, it is necessary to find which module need be patched, that is, the module 
that is responsible for parsing the file



Lets Fuzz WPS - Find Target Module
In Windows platform, we can use process monitor to monitor the behavior of the program at runtime, 
and be able to obtain the call stack, by using this information can quickly locate the data 
processing module.



Lets Fuzz WPS

What about the Linux platform?

ltrace

strace
No call stack

1. GDB can obtain the call stack stably

2. File operations of the process can be tracked 

through breakpoints

3. Use GDB's scripting mechanism to automate



Lets Fuzz WPS - Linux Version of FileMon



Lets Fuzz WPS
Related modules for processing doc files

Linux Windows



Failure and plan

WPS can’t execute within python-trace!

I decided to develop the trace module based on gdb. 

The reasons are as follows:

1.Stable, few bugs, support multiple platforms and architectures

2.Support develop plugin with python

3.Open source, can be customized on demand



Implementation
(Version 0.2 – GdbPythonPluginTracer)



GDB Python API

Introduces some commonly used API of GDB Python Plugin

gdb.selected_frame().read_register():   read register value

gdb.selected_inferior().write_memory(): write process memory

gdb.selected_inferior().read_memory():  read process memory

gdb.parse_and_eval(): execute gdb expression and get the result of expression

gdb.execute(): execute gdb command and get the result of command execution

gdb.events.stop.connect: register gdb's stop event callback function, for example, when the process 

triggers a signal, it will enter the callback function for processing.



Workflow
Due to the limitation of the gdb python script, the fuzzer needs to continuously use 
stdin and stdout to interact with gdb during the test.



Code – GDB Plugin

trap.py



Code – Tracer Part

gdb-python-plugin-
tracer.py



When to kill target process
Problem & Common Solution

WPS will not exit the program after parsing the file, but will stay on the GUI interface and wait 

for the user to operate, so the fuzzer needs to manually kill the process.

The commonly used method is to set a timeout, when the timeout occurs, the fuzzer will kill the 

process.

Disadvantage

1. The execution time of the program is fixed each time. It will waste time when process simple 

testcase (actually parsing time is less than timeout), and when process complex testcase 

(actually parsing time is greater than timeout), it will result in an incomplete file parsing.

2. Unable to detect DOS vulnerabilities.



When to kill target process – our solution 

1. First, use the trace module to trace the program execution and print the basic blocks executed 

by the program, and find the last basic block END_BBL executed after the process has parsed the 

input file.

2. In the following fuzzing, when the process reaches END_BBL, it means that the process has 

entered the GUI loop, and the process can be killed at this time.

During the fuzzing, record the average time (avg_time) of each testcase, and then set the DOS 

timeout to 10* avg_time. 

When the execution time is greater than timeout, it is considered that DOS bug has been found.



When to kill target process



When to kill target process



Speed up Instrument

For large programs, because the number of breakpoints is very large, it will take 

a lot of time for each execution.

Program desc basic block count

WPP For Windows Read and parse PPT file 275 1604

WPP For Linux Read and parse PPT file 401 2478

Ichitaro 2021 Platinum Read and parse doc、xls and so on 167 3576



Speed up Instrument - accelerated mode 
In the accelerated mode, the fuzzer first obtains the executed basic blocks from the trace module, 

then patch the files related to these basic blocks and remove the breakpoint instructions at the 

corresponding positions in the files.

Instrumented module
 (not executed)

Instrumented module
(1' execution)

Instrumented module
(2' execution)

Breakpoint instruction At the end of each execution, the executed breakpoint instruction 
will be remove in the file



Lets Fuzz WPS Again!



Initial Results

• RadamsaMutator don’t consider the ratio of data mutation, it may seriously destroy the file 

structure, causing the testcase to be discarded very early, so that deep vulnerabilities cannot 

be found.

• TinyMutator can only mutates a small percentage of the data in the sample file, so the use 

cases can enter a deeper code path and and the fuzzing is more efficient.

Mutator Crash Count Time

RadamsaMutator 0 3 * 24h

TinyMutator 10+ 24h

Reason



Implementation
(Version 0.3-trapfuzzer-gdb-tracer)



Why we need trapfuzzer-gdb-tracer

GdbPythonPluginTracer have some limits, such as:

1. It is inconvenient to debug, we need to use a python script to continuously send continue commands 

to the stdin of gdb.

2. We need to restart gdb for each test, the python runtime, and the communication overhead of fuzzer 

will cause additional performance overhead.

trapfuzzer-gdb-tracer has following advantages:

1. Written in C++, faster.

2. We can compile static-link GDB to reduce the requirements of environment.

3. Easy to debug.



On the Linux platform, gdb use ptrace to debug process. 

When gdb starts the debugged program, it will call start_event_loop to start the event loop and 

wait for events from the target process, such as hitting a breakpoint , creating a child process, 

and so on.

GDB Internals



GDB Internals

start_event_loop

gdb_do_one_event

handle_inferior_event

fetch_inferior_event



GDB Internals
handle_signal_stop handles the situation where the debugged process stops due to 
receiving a signal,



Modify GDB

Modify the handle_signal_stop function to let gdb automatically handle the breakpoint events of 

the process:

1. First it gets the value of the pc register, and then finds the module where the pc is located

2. Then according to pc and basic-block-info-file, get the original instruction of the position

3. Finally, replace the breakpoint instruction with the original instruction and let the process 

continue execution



Modify GDB
We can use add_com to add custom gdb commands

Use execute_command_to_string to execute gdb command



Code for SIGTRAP



Architecture



Implementation
(Version 0.4-Windows Support)



Windows Support #1 - winappdbg-tracer

Based on winappdbg
1. based on python.

2. winappdbg basically meets the demand, but there are still some 

shortcomings: speed, incomplete access to the call stack.



Windows Support #2 – DbgEngTracer

The DbgEng API is a series of APIs for developing debuggers provided by Microsoft. 

Users only need to register the corresponding callback function to implement a 

debugger.

Advantage:

1.Fast execution speed.

2.DbgEng API can get the complete call stack of the program.



Windows Support #2 – DbgEngTracer 
1. WriteVirtual/ReadVirtual: Read/Write process memory.

2. GetStackTrace: Get backtrace of process.



Example



Triage
crash deduplication scheme:
1.first get the call stack of crash
2.then splice the lower 12 bits of each call stack as the hash of crash
3.de-duplicate crash according to hash



Dialog Box
automatically handle dialog box with autoit



Dialog Box
automatically handle dialog box with huorong

https://www.huorong.cn/downloadv5.html?1563359375


Other Features

nc 127.0.0.1 8821

Users can check the status of Fuzz through the management port during the fuzzing process



Start Fuzzing



Three elements of fuzzing

Ways to obtain samples

execution speed, seed quality/quantity, mutation algorithm

1. Obtained from some online sites that provide sample sets

2. Crawl a large number of sample files through the grammar of the search engine

3. Some open source projects will bring some testcases to test the program

4. Testcases generated when using white box Fuzz tools such as AFL to test similar software

5. The bug submission page of the target program or similar program

6. Generated with format conversion tool



Preparing the Environment

Ways for faster execution

use ramdisk, but pay attention to scheduled backups!

mount -t tmpfs -o size=4G tmpfs /tmp/ramdisk/

Ramdisk in Linux

ImDisk Toolkit

Ramdisk in Windows



Equipment & Results
laptop with the following configuration: 
i5-8700 (4 Cores 8 threads) / 16G DDR3 RAM / 1T SSD

Software Platform Time Initial Seeds Bug Found

WPS OFFICE Linux & Windows ≈ 8 month Crawl 200+

中望CAD Linux ≈ 1 day AFL (fuzz libredwg) 4+

WPS Photo Windows ≈ 1 day AFL (fuzz libpng) 15

Foxit PDF Windows ≈ 7 day Crawl a few crashes

Honeyview Windows ≈ 1 day AFL (fuzz libpng) a few crashes

Ichitaro 2021 Windows ≈ 7 day trapfuzzer (fuzz WPS) 100+ unique crash.



Compare with existing tools

Tool Scenarios Advantage Disadvantage

AFL Library, small program Coverage, Speed Large software requires wrapper and 
high difficulty to user

Peach protocol fuzzing, file 
fuzzing

easy to use after the model is 
written

model development is difficult

trapfuzzer file fuzzing now easy to use, support large software, 
support coverage！

Compared with AFL, there is less 
feedback coverage and speed is slow.



Conclusion

1.Seed is important and mutate ratio is also important

2.GDB and DbgEng API is very nice.

3.Fuzzing with coverage is much better than none



Future Plans

1.More architecture support (arm, mips)

2.Optimize distributed Fuzz scheduling

3.Automatic detect data mutation ratio and mutation range.

4.More precise crash deduplication mechanism

5.……………………



Talk Title | Speaker Name here. Can change this on footer menu 63

Q&A
Thank you!



References

1. https://loda.hala01.com/2017/06/gdb.html

2. https://www.embecosm.com/appnotes/ean3/embecosm-howto-gdb-porting-ean3-issue-

2.html

https://loda.hala01.com/2017/06/gdb.html
https://www.embecosm.com/appnotes/ean3/embecosm-howto-gdb-porting-ean3-issue-2.html

