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Tooling: Basic
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Tooling: SLUB Allocation Analysis

We found ftrace left something to be desired

Found slabdbg, but ARM only

Pull request for x64 support, but broken on newer kernels

We wrote our own new library libslub

Will be made publicly available at some point

Functionally similar to our other public heap analysis plugins:

Freelist encoding, etc

Inspired by slabdbg

But lots more analysis functionality

libptmalloc

libdlmalloc

libtalloc
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Recent netfilter/nf_tables vulnerabilities

March 2022: Nick Gregory

April 2022: David Bouman

May 2022: @bienpnn Team Orca of Sea Security (Pwn2Own Desktop 2022)

June 2022: @ezrak1e Ant Group Light-Year Security Lab

June 2022: Arthur Mongodin RANDORISEC

July 2022: Arthur Mongodin RANDORISEC

Documented nf_tables in great detail

Highly recommended reading as background for our research
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Important nf_tables Terms and Structures
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Set: struct nft_set
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Embedding Expressions in Sets

Set's support embedding expressions during creation

Similar to a "dynset" expression

Expressions will be run when elements in the set are updated

Only specific types of expressions can be embedded in a set

Expression must be "stateful" (ie: a counter)
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Writes one uncontrolled pointer to an uncontrolled offset

No repro could be generated

Triaged manually
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nft_expr_destroy() calls into expression-specific destroy function
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Dynset Expression: Destruction

"dynset" expression is not unbound from this set when destroyed

Normally would be done by nf_tables_unbind_set()


Set destruction doesn't happen since set->bindings is not empty

28 / 82



Dynset Expression: Destruction

"dynset" expression is not unbound from this set when destroyed

Normally would be done by nf_tables_unbind_set()


Set destruction doesn't happen since set->bindings is not empty

28 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

29 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

29 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

29 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set

Embedded expression references valid set

Added to the set->bindings list of referenced set on initialization

Immediately destroyed after initialization, but not removed from set->bindings

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set

Embedded expression references valid set

Added to the set->bindings list of referenced set on initialization

Immediately destroyed after initialization, but not removed from set->bindings

29 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set

Destroy first expression on set->bindings

Embedded expression references valid set

Added to the set->bindings list of referenced set on initialization

Immediately destroyed after initialization, but not removed from set->bindings

UAF when updating dangling expression with new prev pointer

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set

Destroy first expression on set->bindings

Embedded expression references valid set

Added to the set->bindings list of referenced set on initialization

Immediately destroyed after initialization, but not removed from set->bindings

UAF when updating dangling expression with new prev pointer

29 / 82

Non-Stateful Expression Added to Bindings List
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Non-Stateful Expression Freed, Dangling On Bindings 
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Initial Exploitation Ideas

How to exploit this?

Ideas:

Constraints of where the pointer is written is quite limiting

Overwrite some length parameter with the pointer?

Overwrite some pointer with new pointer, and create better UAF?

Write pointer to buffer, and leak back to userland?
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UAF1: SET1 Address Leak

Possible to read the written address from userland
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Success, But What Next?

This SET1 address isn't useful for now...

Let's try to free some other object

But confirms stuff works as expected
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Ruling Out Freeing a Expression

Freeing an expression, although potentially useful, is more complicated

Opted to free set->bindings instead

Now to need to find a replacement object that gives us a free primitive

set->bindings is second member only (offset 0x10)

Freeing set->bindings makes controlling data easy, with no additional constraints

CodeQL to the rescue
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Finding a Suitable Object Using CodeQL

Find 96-byte structures allocated on slab cache

Specific member offsets must be pointers
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Candidate: cgroup_fs_context

Allocated when creating a new cgroup

Lives on kmalloc-96, same as nft_dynset

cgroup_fs_context->release_agent overlaps with nft_dynset->bindings->prev

Exposed via fd = syscall(__NR_fsopen, "cgroup2", 0);

Free on demand by destroying the cgroup: close(fd);
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We will refer to this phase as UAF2

We will refer to this freed set as SET2
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UAF2: release_agent Overwrite

Remove an entry from the set->bindings
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Overwrite cgroup_fs_context->release_agent with &set->bindings->next
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We can replace freed SET2+0x10 chunk via FUSE and setxattr()
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The address we leaked with keyctl(KEYCTL_READ)
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We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

FAKESET1->udlen is not limited to sizeof(SET1)

We can also leak objects adjacent to SET1

Spray tty objects prior to SET1 creation

Allows us to craft future fake ops at known memory address

open("/dev/ptmx", O_RDWR|O_NOCTTY);

Places tty_struct on kmalloc-1k
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UAF3: FAKESET1 to Bypass KASLR
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ROP Gadget Hunting

nft_set->ops function call register constraints are mostly:

FAKESET2 completely controlled

Find a gadget that does something interesting with this data

Preferably fetch controlled pointer and then write there controlled data

We did manual hunting using public tools rp

Some functions: rdi, r14 points to FAKESET2

Other functions: rsi, r12 points to FAKESET2

So most offsets into the object could be useful
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__hlist_del gadget

Function offsets happen to perfectly overlap with controlled set values
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Unsafe Double Unlink

Double unlink will OOPS after our controlled write!

Problem? Nope...

Quite similar to recent STAR Labs io_uring __list_del technique

Ubuntu uses panic_on_oops=0 sysctl so we don't actually care

But we don't leak or need physmap
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Invoking Gadget

We chose to use nft_set->ops->gc_init() to trigger ROP gadget

Require some setup and explicit expression type to trigger

Requires an expression with NFT_EXPR_GC flag

nft_connlimit is only one with this flag

If flag set, gc_init() invoked during expression initialization
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Targeting modprobe_path

We chose to write to modprobe_path for quick win

Well documented and widely used technique by now

We write a 8-byte address that we can also use as a string

Obviously some real-world limitations

Overwrite kernel string holding binary path, execute new path as root

Ex: /tmp/x\0

/tmp/ mounted as non-executable, etc

Per-container temporary folder different from executing context
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UAF4: FAKESET2 For Code Execution

72 / 82

https://sam4k.com/like-techniques-modprobe_path/


UAF4: FAKESET2 For Code Execution
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Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address
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AftermathAftermath

Patch Analysis

Prevented the initialization of any non-stateful expression during set creation

This should actually kill a lot of underlying bugs

BONUS: Fix also stops a separate reference counting bug we had found

Fixed here
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Patch

NFT_EXPR_STATEFUL flag is now checked prior to allocation
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Conclusion

netlink and nf_tables is a fairly rich attacks surface

Same old tune:

msg_msg is popular for many exploits, but not explicitly required

Constructing bug-specific primitives is still very feasible!

Lots of new bugs/writeups/exploits in 2022

Unprivileged namespaces still seems very risky to have enabled

panic_on_oops=0 is dangerous

Userland FUSE server + setxattr() is very powerful

Writable modprobe_path remains a big weakness
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Mitigations / Prevention

How to avoid exploitation of these types of bugs?

Prevent ability to free misaligned slab cache addresses

More object-specific slab caches to reduce UAF replacement possibilities

CFI to avoid ROP gadget execution

panic_on_oops=1 to prevent unlink trick

Read-only modprobe_path via CONFIG_STATIC_USERMODEHELPER

Disable unprivileged namespaces

Disable userland FUSE server support

grsecurity's autoslab

Google's experimental mitigations

No idea when it's available for x64?

Fairly inconvenient in the real world
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Contact

Accompanying blog will be released shortly with a lot more details

EDG team group effort

We are hiring!

Aaron Adams: @fidgetingbits

Cedric Halbronn: @saidelike

Alex Plaskett: @alexjplaskett
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Talon Voice Coding

I have bad RSI for a really long time

For the last ~2 years I've used voice coding and eye tracking for my 99% of work/research

Shout out to @lunixbochs's voice coding framework Talon

Take care of your hands/body everyone!
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Questions?

https://talonvoice.com/

