\ SecConf ‘
2o = 2022 Singapore

|
(=]
o/

<
<

Settlers of Netlink
>

—

20228IN —=

HITBSecConf |
2022 Singapore

Introduction

#HITB2022SIN — =

HITBSecConf
About 2022 Singapore

e NCC Group - Exploit Development Group

e Recently working on Pwn20wn competitions

o Pwn20wn Austin 2021: Western Digital NAS and Lexmark printer
o Blogs here, here, and here
e Aaron Adams

o @fidgetingbits, aaron.adams@nccgroup.com

#HITB2022SIN =

https://research.nccgroup.com/2022/03/24/remote-code-execution-on-western-digital-pr4100-nas-cve-2022-23121/
https://research.nccgroup.com/2022/02/17/bypassing-software-update-package-encryption-extracting-the-lexmark-mc3224i-printer-firmware-part-1/
https://research.nccgroup.com/2022/02/18/analyzing-a-pjl-directory-traversal-vulnerability-exploiting-the-lexmark-mc3224i-printer-part-2/

HITBSecConf
Pwn20wn Desktop 2022 2022 Singapore

e Originally found and exploited one bug

#HITB2022SIN =

https://research.nccgroup.com/2022/03/24/remote-code-execution-on-western-digital-pr4100-nas-cve-2022-23121/
https://research.nccgroup.com/2022/02/17/bypassing-software-update-package-encryption-extracting-the-lexmark-mc3224i-printer-firmware-part-1/
https://research.nccgroup.com/2022/02/18/analyzing-a-pjl-directory-traversal-vulnerability-exploiting-the-lexmark-mc3224i-printer-part-2/

HITBSecConf
Pwn20wn Desktop 2022 2022 Singapore

e Originally found and exploited one bug

o Publicly patched before competition (CVE-2022-0185)

#HITB2022SIN =

https://www.willsroot.io/2022/01/cve-2022-0185.html

HITBSecConf
Pwn20wn Desktop 2022 2022 Singapore

e Originally found and exploited one bug

o Publicly patched before competition (CVE-2022-0185)

e Started exploiting a second bug we found

#HITB2022SIN =

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html

HITBSecConf
Pwn20wn Desktop 2022 2022 Singapore

e Originally found and exploited one bug

o Publicly patched before competition (CVE-2022-0185)

e Started exploiting a second bug we found

o Publicly patched before we were finished (CVE-2022-0995)

#HITB2022SIN =

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995

HITBSecConf
Pwn20wn Desktop 2022 2022 Singapore

e Originally found and exploited one bug

o Publicly patched before competition (CVE-2022-0185)

e Started exploiting a second bug we found

o Publicly patched before we were finished (CVE-2022-0995)

e Started exploiting third bug...

#HITB2022SIN =

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995

HITBSecConf
Pwn20wn Desktop 2022 2022 Singapore

e Originally found and exploited one bug

o Publicly patched before competition (CVE-2022-0185)

e Started exploiting a second bug we found

o Publicly patched before we were finished (CVE-2022-0995)

e Started exploiting third bug...

o Fell short by about a week :(

#HITB2022SIN =

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995

HITBSecConf
Pwn20wn Desktop 2022 2022 Singapore

Originally found and exploited one bug

o Publicly patched before competition (CVE-2022-0185)

Started exploiting a second bug we found

o Publicly patched before we were finished (CVE-2022-0995)

Started exploiting third bug...

o Fell short by about a week :(

We decided to disclose the bug anyway

This talk is about the third bug (CVE-2022-32250)

o We targeted Ubuntu 22.04 Kernel 5.15

#HITB2022SIN =

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995
https://www.openwall.com/lists/oss-security/2022/05/31/1
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995

Tooling: Basic

gdb and pwndbg

o vmlinux-gdb.py
gemu and vmware
pahole

CodeQL

rp rop gadget hunter

HITBSecConf

2022 Singapore

#HI1TB2022SIN

https://www.openwall.com/lists/oss-security/2022/05/31/1
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995
https://github.com/0vercl0k/rp

Tooling: SLUB Allocation Analysis

e We found ftrace left something to be desired

e Found slabdbg, but ARM only

e Pull request for x64 support, but broken on newer kernels
o Freelist encoding, etc

e We wrote our own new library libslub
o Inspired by slabdbg
o But lots more analysis functionality

e Will be made publicly available at some point

e Functionally similar to our other public heap analysis plugins:

o libptmalloc
o libdimalloc

o libtalloc

HITBSecConf

2022 Singapore

#HI1TB2022SIN

https://github.com/0vercl0k/rp
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://github.com/Kyle-Kyle/slabdbg
https://github.com/nccgroup/libptmalloc
https://github.com/nccgroup/libdlmalloc
https://github.com/nccgroup/libtalloc

] HITBSecConf
Talk Overview 2022 Singapore

Introduction '
Linux netlink/netfilter Recap
Bug_ Analysis

Exploitation approach

Patch Analysis

Conclusions

#HITB20228IN ——=

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://github.com/Kyle-Kyle/slabdbg
https://github.com/nccgroup/libptmalloc
https://github.com/nccgroup/libdlmalloc
https://github.com/nccgroup/libtalloc

HITBSecConf |
2022 Singapore

netlink / netfilter / nf tables

#HITB2022SIN — =

HITBSecConf
nf_tables Userland Usage 2022 Singapore

nft command-line interface for interacting with firewall

Drop input to a TCP port: nft add rule ip filter input tcp dport 80 drop

Well documented tool

We are interested in what's underneath...

#HITB2022SIN ———=

https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes

] HITBSecConf
nf tables Kernel Overview 2022 Singapore

¢ netlink is a socket-based communication mechanism

o Allows userland to control various network functionality in the kernel

o libmnl helper library

#HITB2022SIN ———=

https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html

] HITBSecConf
nf tables Kernel Overview 2022 Singapore

¢ netlink is a socket-based communication mechanism

o Allows userland to control various network functionality in the kernel

o libmnl helper library

e netfilter is a network filtering mechanism in the kernel
o Functionality exposed via netlink
o Hooks into tons of the linux network subsystem

o Responsible for connection tracking, NAT, nf_tables, etc

#HITB2022SIN ———=

https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/

] HITBSecConf
nf tables Kernel Overview 2022 Singapore

¢ netlink is a socket-based communication mechanism

o Allows userland to control various network functionality in the kernel

o libmnl helper library
e netfilter is a network filtering mechanism in the kernel

o Functionality exposed via netlink

o Hooks into tons of the linux network subsystem

o Responsible for connection tracking, NAT, nf_tables, etc
e nf tables is the next generation firewall

o Filtering subsystem that replaced iptables

o libnftnl helper library

#HITB2022SIN ———=

https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://www.netfilter.org/projects/libnftnl/index.html

] HITBSecConf
nf tables Kernel Overview 2022 Singapore

netlink is a socket-based communication mechanism

o Allows userland to control various network functionality in the kernel

o libmnl helper library

netfilter is a network filtering mechanism in the kernel
o Functionality exposed via netlink
o Hooks into tons of the linux network subsystem

o Responsible for connection tracking, NAT, nf_tables, etc

nf_tables is the next generation firewall
o Filtering subsystem that replaced iptables

o libnftnl helper library

All exposed via CAP_NET_ADMIN

o Accessible from unprivileged user or network namespace

#HITB2022SIN ———=

https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://www.netfilter.org/projects/libnftnl/index.html
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://www.netfilter.org/projects/libnftnl/index.html

. o HITBSecConf
Recent netfilter/nf tables vulnerabilities 2022 Singapore

e March 2022: Nick Gregory

e April 2022: David Bouman

o Documented nf_tables in great detail
o Highly recommended reading as background for our research

e May 2022: @bienpnn Team Orca of Sea Security (Pwn20wn Desktop 2022)

e June 2022: @ezrakle Ant Group Light-Year Security Lab

e June 2022: Arthur Mongodin RANDORISEC

e July 2022: Arthur Mongodin RANDORISEC

#HITB2022SIN ——=

https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://www.netfilter.org/projects/libnftnl/index.html
https://nickgregory.me/post/2022/03/12/cve-2022-25636/
https://blog.dbouman.nl/2022/04/02/How-The-Tables-Have-Turned-CVE-2022-1015-1016/
https://www.openwall.com/lists/oss-security/2022/08/09/5
https://seclists.org/oss-sec/2022/q2/164
https://www.randorisec.fr/pt/yet-another-bug-netfilter/
https://www.randorisec.fr/pt/crack-linux-firewall/

HITBSecConf
Important nf_tables Terms and Structures 2022 Singapore

e Tables (struct nft_table)

o Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

#HITB2022SIN ——=

https://nickgregory.me/post/2022/03/12/cve-2022-25636/
https://blog.dbouman.nl/2022/04/02/How-The-Tables-Have-Turned-CVE-2022-1015-1016/
https://www.openwall.com/lists/oss-security/2022/08/09/5
https://seclists.org/oss-sec/2022/q2/164
https://www.randorisec.fr/pt/yet-another-bug-netfilter/
https://www.randorisec.fr/pt/crack-linux-firewall/
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables

HITBSecConf
Important nf_tables Terms and Structures 2022 Singapore

e Tables (struct nft_table)

o Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

¢ Chains (struct nft_chain)

o Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

#HITB2022SIN ——=

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains

HITBSecConf
Important nf_tables Terms and Structures 2022 Singapore

e Tables (struct nft_table)

o Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

¢ Chains (struct nft_chain)
o Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)
e Rules (struct nft_rule)

o Holds groups of expressions for processing packets

#HITB2022SIN ——=

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management

HITBSecConf
Important nf_tables Terms and Structures 2022 Singapore

e Tables (struct nft_table)
o Holds groups of chains associated with a specific network protocol (ie: ip, ip6)
e Chains (struct nft_chain)
o Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)
e Rules (struct nft_rule)
o Holds groups of expressions for processing packets
e Expressions (struct nft_expr)

o We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit

#HITB2022SIN ——=

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals

HITBSecConf
Important nf_tables Terms and Structures 2022 Singapore

e Tables (struct nft_table)
o Holds groups of chains associated with a specific network protocol (ie: ip, ip6)
e Chains (struct nft_chain)
o Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)
e Rules (struct nft_rule)
o Holds groups of expressions for processing packets
e Expressions (struct nft_expr)
o We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit
e Sets (struct nft_set)

o Tracks a set of data elements associated with a rule or table (ex: list of ports, ips, etc)

#HITB2022SIN ——=

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Sets

HITBSecConf
Important nf_tables Terms and Structures 2022 Singapore

e Tables (struct nft_table)

o Holds groups of chains associated with a specific network protocol (ie: ip, ip6)
e Chains (struct nft_chain)

o Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)
e Rules (struct nft_rule)

o Holds groups of expressions for processing packets
e Expressions (struct nft_expr)

o We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit
e Sets (struct nft_set)

o Tracks a set of data elements associated with a rule or table (ex: list of ports, ips, etc)
e Elements

o Data tracked by a set in special high-performance data structures

#HITB2022SIN ——=

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Sets
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Sets
https://wiki.nftables.org/wiki-nftables/index.php/Sets

HITBSecConf
Set: struct nft_set 2022 Singapore

list;
bindings;

*name ;

field count;

udlen:

*udata:

#HITB2022SIN ———=

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Sets
https://wiki.nftables.org/wiki-nftables/index.php/Sets

HITBSecConf
struct nft_set Members of Interest 2022 Singapore

e During exploitation we are especially interested in the following nft_set members:

o list: Doubly linked list of nft_set structures associated with the same table

#HITB2022SIN =

HITBSecConf
struct nft_set Members of Interest 2022 Singapore

e During exploitation we are especially interested in the following nft_set members:

o list: Doubly linked list of nft_set structures associated with the same table

o bindings: Doubly linked list of expressions that are bound to this set

#HITB2022SIN =

HITBSecConf
struct nft_set Members of Interest 2022 Singapore

e During exploitation we are especially interested in the following nft_set members:

o list: Doubly linked list of nft_set structures associated with the same table

o bindings: Doubly linked list of expressions that are bound to this set

o name: Name of the set used for lookups in API

#HITB2022SIN =

HITBSecConf
struct nft_set Members of Interest 2022 Singapore

e During exploitation we are especially interested in the following nft_set members:

o list: Doubly linked list of nft_set structures associated with the same table

o bindings: Doubly linked list of expressions that are bound to this set
o name: Name of the set used for lookups in API

o use: Counter indicating the number of external references

#HITB2022SIN =

HITBSecConf
struct nft_set Members of Interest 2022 Singapore

e During exploitation we are especially interested in the following nft_set members:

o list: Doubly linked list of nft_set structures associated with the same table

(¢]

bindings: Doubly linked list of expressions that are bound to this set

o name: Name of the set used for lookups in API

(¢]

use: Counter indicating the number of external references

(¢]

udata: A pointer into the set's inline data[] array

#HITB2022SIN =

HITBSecConf
struct nft_set Members of Interest 2022 Singapore

e During exploitation we are especially interested in the following nft_set members:

o list: Doubly linked list of nft_set structures associated with the same table

(¢]

bindings: Doubly linked list of expressions that are bound to this set
o name: Name of the set used for lookups in API

o use: Counter indicating the number of external references

o udata: A pointer into the set's inline data[] array

o udlen: The length of user data stored in the set's data array

#HITB2022SIN =

HITBSecConf
struct nft_set Members of Interest 2022 Singapore

e During exploitation we are especially interested in the following nft_set members:

o list: Doubly linked list of nft_set structures associated with the same table

(¢]

bindings: Doubly linked list of expressions that are bound to this set
o name: Name of the set used for lookups in API

o use: Counter indicating the number of external references

o udata: A pointer into the set's inline data[] array

o udlen: The length of user data stored in the set's data array

o ops: A function table pointer for operating on the set

#HITB2022SIN =

HITBSecConf
struct nft_set Members of Interest 2022 Singapore

e During exploitation we are especially interested in the following nft_set members:

o list: Doubly linked list of nft_set structures associated with the same table

(¢]

bindings: Doubly linked list of expressions that are bound to this set
o name: Name of the set used for lookups in API
o use: Counter indicating the number of external references
o udata: A pointer into the set's inline data[] array
o udlen: The length of user data stored in the set's data array
o ops: A function table pointer for operating on the set
e Allocated kmalloc-512 by default

e Variable length user data can bump it to be placed on kmalloc-1k

#HITB2022SIN =

A closer look at nft_set->bindings

e Expressions bound to a set end up on set->bindings doubly-linked list

e Expressions will contain a struct nft_set_binding member

list;
*chain;

flags;

e So set->bindings entries will point into list member above

HITBSecConf

2022 Singapore

#HI1TB2022SIN

Expression: struct nft_expr

e All expression types extend struct nft_expr, and are stored in data member

__attribute_ ((aligned(__

e Typical use:

e Noteworthy because size overhead influences slab cache selection

HITBSecConf

2022 Singapore

#HI1TB2022SIN

] HITBSecConf
Lookup Expression: struct nft_lookup 2022 Singapore

e Fetches of value from a key in the specified set

e Allocated on kmalloc-48 slab cache

e We are interested in binding being at offset 0x10

#HITB2022SIN ——=

]] HITBSecConf
Dynamic Set Expression: struct nft_dynset 2022 Singapore

e Allows expressions to be associated with set elements

e Allocated on kmalloc-96 slab cache

e We are interested in binding being at offset 0x38

_set *get
et_ext_tmpl tmpl,

#HITB2022SIN =

. . 4 .) HITBSecConf
) Normal Set Expression Binding Relationship 2022 Singapore

kmalloc-512

#HITB20228IN ——=

o HITBSecConf
) Table With Linked Sets 2022 Singapore

#HITB20228IN ——=

. . . HITBSecConf
Embedding Expressions in Sets 2022 Singapore

Set's support embedding expressions during creation

Similar to a "dynset" expression

Expressions will be run when elements in the set are updated

Only specific types of expressions can be embedded in a set

o Expression must be "stateful" (ie: a counter)

#HITB20228IN ——=

HITBSecConf |
2022 Singapore

CVE-2022-32250

] HITBSecConf
Bug Overview 2022 Singapore

Original disclosure here

Found with syzkaller
o No repro could be generated

o Triaged manually

UAF while handling expressions on set->bindings list

Writes one uncontrolled pointer to an uncontrolled offset

#HITB2022SIN ———=

https://seclists.org/oss-sec/2022/q2/159

] HITBSecConf
Bug Overview 2022 Singapore

Original disclosure here

Found with syzkaller

o No repro could be generated

o Triaged manually

UAF while handling expressions on set->bindings list

Writes one uncontrolled pointer to an uncontrolled offset

@dvyukov noticed after our disclosure that syzbot found it in November 2021

o Automatically closed as invalid

#HITB2022SIN ———=

https://seclists.org/oss-sec/2022/q2/159
https://seclists.org/oss-sec/2022/q2/159
https://twitter.com/dvyukov/status/1544222911346757633
https://syzkaller.appspot.com/bug?extid=4bf3063945424e8d8af3

HITBSecConf
Initialize Expression First, Check Validity After” 202Zsingapore

expr *nft_set_elem_expr_alloc(
nft_set *set,
nlattr *attr)

AP iz expression
[_EXpT ™expr, first
1nt err,
expr nTt_e;
I

ft_expr init{ctx, attr);
. ; ; Checks if expression
is valid type second

FT_EXPR_STATEFUL))

. I Destroys immediately
eXpL. if type is wrong

r_destroy(ctx, expI).

ERR_PTR(err);

#HITB20228IN =

https://seclists.org/oss-sec/2022/q2/159
https://twitter.com/dvyukov/status/1544222911346757633
https://syzkaller.appspot.com/bug?extid=4bf3063945424e8d8af3

. .] HITBSecConf
Indirect Expression Destruction 2022 Singapore

e nft_expr_destroy() calls into expression-specific destroy function

#HITB2022SIN ———=

] HITBSecConf
Lookup and Dynset Expressions 2022 Singapore

e Both of these expressions look up a set when initialized

¢ Added to the set->bindings on initialization via nf_tables_bind_set()

e But, their destroy method called by nft_expr_destroy() won't remove them from set->bindings list

#HITB20228IN =

] HITBSecConf
Lookup and Dynset Expressions 2022 Singapore

Both of these expressions look up a set when initialized

Added to the set->bindings on initialization via nf_tables_bind_set()

But, their destroy method called by nft_expr_destroy() won't remove them from set->bindings list

UAF on subsequent set->bindings use
o List updates add or remove struct nft_set_binding linkage

o Ability to write address of set, or another expressions, to freed memory

#HITB20228IN =

. e re _es HITBSecConf
Dynset Expression: Initialization 2022 Singapore

s_pernet *nft_net = nft_pernet(ctx->net);
dynset *priv = nft_expr_priv(expr);

d_set(ctx, set, &priv->binding),

Expression added
to set->bindings

#HITB2022SIN ——=

]] HITBSecConf
Dynset Expression: Destruction 2022 Singapore

e "dynset" expression is not unbound from this set when destroyed

e Normally would be done by nf_tables_unbind_set()

e Set destruction doesn't happen since set->bindings is not empty
void nf_tables_destroy_set(nft_ctx *ctx,

(list_empty(&set->bindings) && nf

nft_set_destroy(ctx, set);

#HITB20228IN =

HITBSecConf
Example: How to Write Set Address to a Free Chufiknspore

e Create a valid set that expressions we initialize can reference

#HITB2022SIN ———=

HITBSecConf
Example: How to Write Set Address to a Free Chufiknspore

e Create a valid set that expressions we initialize can reference

e Bind a expression to the valid set, to populate set->bindings with one entry

#HITB2022SIN ———=

HITBSecConf
Example: How to Write Set Address to a Free Chufiknspore

e Create a valid set that expressions we initialize can reference
e Bind a expression to the valid set, to populate set->bindings with one entry

e Create a new invalid set

#HITB2022SIN ———=

HITBSecConf
Example: How to Write Set Address to a Free Chufiknspore

Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set
o Embedded expression references valid set
o Added to the set->bindings list of referenced set on initialization

o Immediately destroyed after initialization, but not removed from set->bindings

#HITB2022SIN ———=

HITBSecConf
Example: How to Write Set Address to a Free Chufiknspore

e Create a valid set that expressions we initialize can reference
e Bind a expression to the valid set, to populate set->bindings with one entry

e Create a new invalid set

e Embed "lookup" or "dynset" expression in the invalid set

o Embedded expression references valid set

o Added to the set->bindings list of referenced set on initialization

o Immediately destroyed after initialization, but not removed from set->bindings
e Destroy first expression on set->bindings

o UAF when updating dangling expression with new prev pointer

#HITB2022SIN ———=

. o] HITBSecConf
Non-Stateful Expression Added to Bindings List 2022 Singapore

[Iegitimate expression added earlier] [added to set bindings list]
=, =l

setwe create with embedded expression
will fail because expression is non-stateful

existing set

#HITB20228IN ——=

. . H HITBSecConf
) Non-Stateful Expression Freed, Dangling On Birfidifitygsapore

-

N now dangling on bindings list

legitimate expression added earlierJ ' non-stateful expression, so destroye dj

|r dangling pointer
Yy

existing set

- #HITB20228IN ——=

. . . HITBSecConf
) UAF Write of New Expression Added to List 2022 Singapore

dangling expression is updated when
changing list linkage

existing set

- #HITB20228IN ——=

HITBSecConf |
2022 Singapore

Exploiting CVE-2022-32250

&

. . HITBSecConf
Initial Exploitation Ideas 2022 Singapore

e How to exploit this?

e Ideas:

o QOverwrite some length parameter with the pointer?
o Qverwrite some pointer with new pointer, and create better UAF?
o Write pointer to buffer, and leak back to userland?

e Constraints of where the pointer is written is quite limiting

#HITB2022SIN =

] HITBSecConf
Easy Win: Leak Some Address 2022 Singapore

¢ Confirm mental model

e Leak a set or expression address

o Offset of bindings member

e How to leak the data?

#HITB20228IN ———=

] HITBSecConf
Easy Win: Leak Some Address 2022 Singapore

Confirm mental model

Leak a set or expression address

o Offset of bindings member

How to leak the data?

Use popular struct user_key_payload technique
o add_key() syscall: Controlled size to get allocated on different slab caches

o key_ctl(KEYCTL_READ): Can read payload contents at any time

#HITB20228IN ———=

https://zplin.me/papers/ELOISE.pdf

] HITBSecConf
Easy Win: Leak Some Address 2022 Singapore

Confirm mental model

Leak a set or expression address

o Offset of bindings member

How to leak the data?

Use popular struct user_key_payload technique

o add_key() syscall: Controlled size to get allocated on different slab caches

o key_ctl(KEYCTL_READ): Can read payload contents at any time

Terminology:
o This stage will be UAF1

o The set we leak will be referred to as SET1

#HITB20228IN ———=

https://zplin.me/papers/ELOISE.pdf
https://zplin.me/papers/ELOISE.pdf

HITBSecConf
UAF1: SET1 Address Leak 2022 Singapore

UAF1: Leak SET1 Address

[legitimate expression added earlierj [added to set bindings list]
~. C =P =

set we create with embedded expression
will fail because expression is non-stateful

#HITB20228IN ——=

https://zplin.me/papers/ELOISE.pdf

HITBSecConf
) UAF1: SET1 Address Leak 2022 Singapore

UAF1: Leak SET1 Address

(legitimate expression added EalliEl] (non-stateful expression, so destroyed
N now dangling on bindings list

dangling pointer

#HITB20228IN ——=

HITBSecConf
UAF1: SET1 Address Leak 2022 Singapore

UAF1: Leak SET1 Address

(Free this to update user_key payload] Ties cnﬂ;;hﬁ}rﬁea:ﬁ;éacm = J
L _ ﬂﬁ:r_erlappmg prev field L N —
i rcu
L bindings
datalen

payload [E%E}_

user_key payload

#HITB20228IN =

HITBSecConf
UAF1: SET1 Address Leak 2022 Singapore

list linkage with the leaked set address

ICu

UAF1: Leak SET1 Address [
] L

— - ser_key payload is written to when changing
legitimate expression unbound
to update linkage

datalen

_F payload EIE’“}

™ UAF write of
hSETl—?blndings address

e Possible to read the written address from userland

- #HITB20228IN ——=

HITBSecConf
Success, But What Next? 2022 Singapore

e This SET1 address isn't useful for now...

o But confirms stuff works as expected

e Let's try to free some other object

#HITB2022SIN ———=

HITBSecConf
Success, But What Next? 2022 Singapore

e This SET1 address isn't useful for now...

o But confirms stuff works as expected

e Let's try to free some other object
e Goal: Find an object on kmalloc-48 or kmalloc-96 with overlapping pointer offsets
o Constraint: overlapping pointer must be freeable on demand

o Qutcome: gives a new free primitive

#HITB2022SIN ———=

Success, But What Next?

This SET1 address isn't useful for now...

o But confirms stuff works as expected

Let's try to free some other object

Goal: Find an object on kmalloc-48 or kmalloc-96 with overlapping pointer offsets
o Constraint: overlapping pointer must be freeable on demand

o Qutcome: gives a new free primitive

Two options of what to free using such a primitive:
o Free sizeof(expression) bytes @ &expression->bindings address (quirky)

o Free sizeof(set) bytes @ &set->bindings address (better)

We chose to use a set. See our blog for more details

HITBSecConf
2022 Singapore

#HI1TB2022SIN

Success, But What Next?

This SET1 address isn't useful for now...

o But confirms stuff works as expected

Let's try to free some other object

Goal: Find an object on kmalloc-48 or kmalloc-96 with overlapping pointer offsets
o Constraint: overlapping pointer must be freeable on demand

o Qutcome: gives a new free primitive

Two options of what to free using such a primitive:
o Free sizeof(expression) bytes @ &expression->bindings address (quirky)

o Free sizeof(set) bytes @ &set->bindings address (better)

We chose to use a set. See our blog for more details

Now to need to find a replacement object that gives us a free primitive

o CodeQL to the rescue

HITBSecConf
2022 Singapore

#HI1TB2022SIN

. 4 . . . HITBSecConf
Finding a Suitable Object Using CodeQL 2022 Singapore

e Find 96-byte structures allocated on slab cache

o Specific member offsets must be pointers

import cpp
from FunctionCall fc,

where (fc.getTarget()
fc.getTe ()

() = fc and

) and
oDirectly(t)) and
rce() and

#HITB2022SIN ——=

] HITBSecConf
Candidate: cgroup_fs_context 2022 Singapore

Allocated when creating a new cgroup

Lives on kmalloc-96, same as nft_dynset

cgroup_fs_context->release_agent overlaps with nft_dynset->bindings->prev

Exposed via fd = syscall(__NR_fsopen, "cgroup2", 0);

Free on demand by destroying the cgroup: close(fd);

#HITB2022SIN ———=

https://man7.org/linux/man-pages/man7/cgroups.7.html

HITBSecConf
struct cgroup_fs_context 2022 Singapore

#HITB2022SIN ——=

https://man7.org/linux/man-pages/man7/cgroups.7.html

] HITBSecConf
Freeing release_agent 2022 Singapore

#HITB20228IN ———=

. . - el HITBSecConf
Preparing a Set Freeing Primitive 2022 Singapore

e We will refer to this phase as UAF2

e We will refer to this freed set as SET2

#HITB20228IN ——=

) UAF2: release_agent Overwrite

e Trigger set->bindings UAF with a nft_dynset expression

UAF2: Build Free SET2 Primitive

L

kmalloc-1024

kmalloc-96

HITBSecConf
2022 Singapore

- #HITB20228IN ——=

) UAF2: release_agent Overwrite

e Replace nft_dynset with a cgroup_fs_context

UAF2: Build Free SET2 Primitive

L

dangling pointer

kmalloc-1024

kmalloc-96

HITBSecConf
2022 Singapore

#HITB20228IN ——=

] HITBSecConf
UAF2: release_agent Overwrite 2022 Singapore

e Remove an entry from the set->bindings

UAF2: Build Free SET2 Primitive [
L

L

unlink this expression to update list linkage]

)

name NEXE | |
; prey | release_agent both nft_dynset->bindings->prev
and release_agent

kmalloc-96

kmalloc-1024

- #HITB20228IN ——=

, HITBSecConf
UAF2: release_agent Overwrite 2022 Singapore

e Overwrite cgroup_fs_context->release_agent with &set->bindings->next

UAF2: Build Free SET2 Primitive

[legitimate expression unbound]

to update linkage
N

L

UAF write of
L SET2-=bindings address

kmalloc-1024

#HITB20228IN ——=

]] HITBSecConf
Freeing and Replacing a Set 2022 Singapore

e We will refer to this phase as UAF3

e We will refer to the replaced SET2 as FAKESET1

#HITB20228IN =

HITBSecConf
) UAF3: FAKESET1 to Bypass KASLR 2022 Singapore

e Destroying the cgroup will free SET2

UAF3: Creating FAKESET1

[Close cgroup to free SET2 J
\"_"\ -

kmalloc-96

kmalloc-1024

#HITB20228IN ——=

UAF3: FAKESET1 to Bypass KASLR

UAF3: Creating FAKESET1

prev

kmalloc-1024

&nft_set-=bindings and below now

'J

freed

HITBSecConf

2022 Singapore

#HI1TB2022SIN

UAF3: FAKESET1 to Bypass KASLR

e We can replace freed SET2+0x10 chunk via FUSE and setxattr()

UAF3: Creating FAKESET1

SET2 mostly replaced

L 7@ FAKESET1)
prev list next } Original SET2->list
FAKESET1
values via

~ setxattr chunk

kmalloc-1024

HITBSecConf

2022 Singapore

#HI1TB2022SIN

https://www.graplsecurity.com/post/iou-ring-exploiting-the-linux-kernel

] HITBSecConf
SET1 Memory Revelation 2022 Singapore

e We already know address of SET1, thanks to UAF1

o The address we leaked with keyctl(KEYCTL_READ)

#HITB2022SIN =

https://www.graplsecurity.com/post/iou-ring-exploiting-the-linux-kernel

] HITBSecConf
SET1 Memory Revelation 2022 Singapore

e We already know address of SET1, thanks to UAF1

o The address we leaked with keyctl(KEYCTL_READ)

e Replace SET2 with FAKESET1

o Use setxattr() call that blocks the kernel waiting on a controlled FUSE server

#HITB2022SIN =

] HITBSecConf
SET1 Memory Revelation 2022 Singapore

We already know address of SET1, thanks to UAF1

o The address we leaked with keyctl(KEYCTL_READ)

Replace SET2 with FAKESET1

o Use setxattr() call that blocks the kernel waiting on a controlled FUSE server

FAKESET1->udata points to SET1

FAKESET1->udlen at least sizeof(SET1)

FAKESET1->name points to somewhere in SET1->data[] contents

o This lets us continue lookup FAKESET1 via netlink

#HITB2022SIN =

] HITBSecConf
SET1 Memory Revelation 2022 Singapore

We already know address of SET1, thanks to UAF1

o The address we leaked with keyctl(KEYCTL_READ)

e Replace SET2 with FAKESET1
o Use setxattr() call that blocks the kernel waiting on a controlled FUSE server
e FAKESET1->udata points to SET1
e FAKESET1->udlen at least sizeof(SET1)
e FAKESET1->name points to somewhere in SET1->data[] contents
o This lets us continue lookup FAKESET1 via netlink
e Leak full SET1 contents
e Leaks nf_tables.ko's .data pointer via SET1->ops

o Fairly limited for ROP gadgets

#HITB2022SIN =

UAF3: FAKESET1 to Bypass KASLR

UAF3: Creating FAKESET1

-
prev list next
~ A
nanme
FAKESET1
values via udata
.
setxattr kT
chunk \
ops . 777
e L.
kmalloc-1024 kmalloc-1024

l2ak nf_tables.ko

HITBSecConf

2022 Singapore

#HI1TB2022SIN

] HITBSecConf
Even Better Memory Revelation 2022 Singapore

e We can do better...

#HITB2022SIN ——=

] HITBSecConf
Even Better Memory Revelation 2022 Singapore

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

o Allows us to craft future fake ops at known memory address

#HITB2022SIN ——=

] HITBSecConf
Even Better Memory Revelation 2022 Singapore

e We can do better...

e nft_set->list, linked list of sets on a table

e Create SET1 and SET2 on same table

e Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)
o Allows us to craft future fake ops at known memory address

e FAKESET1->udlen is not limited to sizeof(SET1)

e We can also leak objects adjacent to SET1

#HITB2022SIN ——=

] HITBSecConf
Even Better Memory Revelation 2022 Singapore

e We can do better...

e nft set->list, linked list of sets on a table

e Create SET1 and SET2 on same table

e Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)
o Allows us to craft future fake ops at known memory address

e FAKESET1->udlen is not limited to sizeof(SET1)

e We can also leak objects adjacent to SET1

e Spray tty objects prior to SET1 creation
o open("/dev/ptmx", O_RDWR|O_NOCTTY);

o Places tty_struct on kmalloc-1k

#HITB2022SIN ——=

https://haxx.in/posts/pwning-tipc/

] HITBSecConf
Even Better Memory Revelation 2022 Singapore

We can do better...

e nft set->list, linked list of sets on a table

e Create SET1 and SET2 on same table

e Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)
o Allows us to craft future fake ops at known memory address

e FAKESET1->udlen is not limited to sizeof(SET1)

e We can also leak objects adjacent to SET1

e Spray tty objects prior to SET1 creation
o open("/dev/ptmx", O_RDWR|O_NOCTTY);
o Places tty_struct on kmalloc-1k

e Allows us to leak address from vmlinux (Better ROP gadgets)

#HITB2022SIN ——=

https://haxx.in/posts/pwning-tipc/
https://haxx.in/posts/pwning-tipc/

UAF3: FAKESET1 to Bypass KASLR

UAF3: Creating FAKESET1

leak SETZ address

prev list next
—
nanme
FAKESET1
values via udata
.
setxattr kT
chunk
ops =
7
- kmalloc-1024 L kmalloc-1024 kmalloc-1024

leak kernel .data address

a4

L 2048-bytes

Y

Adjacent on slab cache

HITBSecConf

2022 Singapore

#HI1TB2022SIN

https://haxx.in/posts/pwning-tipc/

]] HITBSecConf
UAF4: Getting Code Execution 2022 Singapore

e Now to put new KASLR-adjusted pointers in controlled memory

#HITB2022SIN =

]] HITBSecConf
UAF4: Getting Code Execution 2022 Singapore

e Now to put new KASLR-adjusted pointers in controlled memory

e We just leaked the address of FAKESET1

e We control when FAKESET1 is freed

o Thanks to FUSE and setxattr()

#HITB2022SIN =

]] HITBSecConf
UAF4: Getting Code Execution 2022 Singapore

Now to put new KASLR-adjusted pointers in controlled memory

We just leaked the address of FAKESET1

We control when FAKESET1 is freed

o Thanks to FUSE and setxattr()

Can replace FAKESET1 again with new data
o We refer to this as UAF4

o We will refer to the replaced FAKESET1 as FAKESET2

FAKESET2->ops points to a fake table in FAKESET2->data

#HITB2022SIN =

] HITBSecConf
UAF4: FAKESET1 Replacement With FAKESET2 2022 Singapore

UAF4: Creating FAKESET2

FAKESET1
list m

Free setxattr chunk by
\ unblocking FUSE

kmalloc-1024

#HITB2022SIN =

] HITBSecConf
UAF4: FAKESET1 Replacement With FAKESET2 2022 Singapore

UAF4: Creating FAKESET2

(FAKESETlreplaced |
with FAKESET2

FAKESET?Z values via
\ another setxattr chunk

kmalloc-1024

#HITB2022SIN =

] HITBSecConf
ROP Gadget Hunting 2022 Singapore

 nft_set->ops function call register constraints are mostly:
o Some functions: rdi, r14 points to FAKESET?2
o Other functions: rsi, r12 points to FAKESET2
e FAKESET2 completely controlled
o So most offsets into the object could be useful
e Find a gadget that does something interesting with this data
e Preferably fetch controlled pointer and then write there controlled data

e We did manual hunting using public tools rp

#HITB2022SIN ——=

https://github.com/0vercl0k/rp

_ HITBSecConf
__hlist_del gadget 2022 Singapore

e Function offsets happen to perfectly overlap with controlled set values

pwndbg> i _ hlist_del

swevent_del+34>:

#HITB2022SIN =

https://github.com/0vercl0k/rp

] HITBSecConf
Unsafe Double Unlink 2022 Singapore

e Double unlink will OOPS after our controlled write!

e Problem? Nope...

o Ubuntu uses panic_on_oops=0 sysctl so we don't actually care
e Quite similar to recent STAR Labs io_uring __list_del technique

o But we don't leak or need physmap

Controls the kernel's behaviour when an oops or BUG is encountered.

@: try to continue operation

1: panic immediately. If the "panic' sysctl is also non-zero then the
machine will be rebooted.

#HITB2022SIN ———=

https://starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

] HITBSecConf
Invoking Gadget 2022 Singapore

e We chose to use nft_set->ops->gc_init() to trigger ROP gadget

e Require some setup and explicit expression type to trigger

e Requires an expression with NFT_EXPR_GC flag
e nft_connlimit is only one with this flag

e If flag set, gc_init() invoked during expression initialization

#HITB2022SIN ———=

https://starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

Targeting modprobe_path

We chose to write to modprobe_path for quick win

Well documented and widely used technique by now

o QOverwrite kernel string holding binary path, execute new path as root

We write a 8-byte address that we can also use as a string

o Ex: /tmp/x\0

Obviously some real-world limitations
o /tmp/ mounted as non-executable, etc

o Per-container temporary folder different from executing context

HITBSecConf

2022 Singapore

#HI1TB2022SIN

https://sam4k.com/like-techniques-modprobe_path/

UAF4: FAKESET2 For Code Execution

UAF4: Creating FAKESET2

list next

2

Il:l--

:
F

o4
+«

ndeact ‘ address of SET2 known from SET1 leak

klen=1 ——y

fake name

nft_set_ops

kmalloc-1024

ge_init

elemsize

mov
mov
mov
test
je
mov

rax,QWORD PTR [rdi+@x6@]
rdx,QWORD PTR [rdi+@x68]
QWORD PTR [xdx],rax
rax,rax
oxffffffff812795e4
QWORD PTR [rax+@x8],rdx

movabs rax,@dxdead@@@000000122

mov
Tet

QWORD PTR [rd1i+@x68],rax

ROP Gadget
write what where

HITBSecConf

2022 Singapore

#HI1TB2022SIN

https://sam4k.com/like-techniques-modprobe_path/

] HITBSecConf
Putting It All Together 2022 Singapore

e Trigger 4 UAF scenarios

e UAFI1: Replace nft_dynset with user_key_payload and leak SET1 address

#HITB2022SIN ———=

] HITBSecConf
Putting It All Together 2022 Singapore

e Trigger 4 UAF scenarios

e UAFI1: Replace nft_dynset with user_key_payload and leak SET1 address

e UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

#HITB2022SIN ———=

] HITBSecConf
Putting It All Together 2022 Singapore

e Trigger 4 UAF scenarios

e UAFI1: Replace nft_dynset with user_key_payload and leak SET1 address

e UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent
e UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

e Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory

#HITB2022SIN ———=

] HITBSecConf
Putting It All Together 2022 Singapore

e Trigger 4 UAF scenarios

e UAFI1: Replace nft_dynset with user_key_payload and leak SET1 address

e UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent
e UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

e Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory

e UAF4: Replace FAKESET1 with FAKESET2 and ops now pointing to valid gadget

#HITB2022SIN ———=

] HITBSecConf
Putting It All Together 2022 Singapore

Trigger 4 UAF scenarios

e UAFI1: Replace nft_dynset with user_key_payload and leak SET1 address

e UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent
e UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

e Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory
e UAF4: Replace FAKESET1 with FAKESET2 and ops now pointing to valid gadget

e Trigger gc_init() to overwrite modprobe_path

e Trigger module load from userland and get root

#HITB2022SIN ———=

HITBSecConf |
2022 Singapore

Aftermath

#HITB2022SIN — =

] HITBSecConf
Patch Analysis 2022 Singapore

Prevented the initialization of any non-stateful expression during set creation

This should actually kill a lot of underlying bugs

BONUS: Fix also stops a separate reference counting bug we had found

Fixed here

#HITB2022SIN =

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/net/netfilter?id=520778042ccca019f3ffa136dd0ca565c486cedd

HITBSecConf
Patch 2022 Singapore

e NFT_EXPR_STATEFUL flag is now checked prior to allocation

_expr_init(
nlattr *nla)

fo expr_info;

Parse expression
info without initializing

_parse(ctx, nla, &expr_info);
Check flag before
initialization

XPR_STATEFUL))

-ENOMEM;
kzalloc(expr_info.ops->size, GFP_KERNEL_ACCOUNT);

#HITB2022SIN =

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/net/netfilter?id=520778042ccca019f3ffa136dd0ca565c486cedd

Conclusion

netlink and nf_tables is a fairly rich attacks surface

o Lots of new bugs/writeups/exploits in 2022

Same old tune:

o Unprivileged namespaces still seems very risky to have enabled
o panic_on_oops=0 is dangerous

o Userland FUSE server + setxattr() is very powerful

o Writable modprobe_path remains a big weakness

e msg_msg is popular for many exploits, but not explicitly required

Constructing bug-specific primitives is still very feasible!

HITBSecConf
2022 Singapore

#HI1TB2022SIN

.. . . HITBSecConf
Mitigations / Prevention 2022 Singapore

How to avoid exploitation of these types of bugs?

e Prevent ability to free misaligned slab cache addresses

* More object-specific slab caches to reduce UAF replacement possibilities
o grsecurity's autoslab

o Google's experimental mitigations

e CFI to avoid ROP gadget execution
o No idea when it's available for x64?
e panic_on_oops=1 to prevent unlink trick
o Fairly inconvenient in the real world
e Read-only modprobe_path via CONFIG_STATIC_USERMODEHELPER
e Disable unprivileged namespaces

e Disable userland FUSE server support

#HITB2022SIN =

https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://github.com/thejh/linux/blob/slub-virtual/MITIGATION_README

HITBSecConf
Contact 2022 Singapore

e Accompanying blog will be released shortly with a lot more details

e EDG team group effort

o Aaron Adams: @fidgetingbits
o Cedric Halbronn: @saidelike
o Alex Plaskett: @alexjplaskett

e We are hiring!

#HITB2022SIN ———=

https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://github.com/thejh/linux/blob/slub-virtual/MITIGATION_README
https://nccgroup.wd3.myworkdayjobs.com/en-US/NCC_Group/details/Exploit-Developer_R6065

]] HITBSecConf
Talon Voice Coding 2022 Singapore

I have bad RSI for a really long time

For the last ~2 years I've used voice coding and eye tracking for my 99% of work/research

Shout out to @lunixbochs's voice coding framework Talon

Take care of your hands/body everyone!

#HITB2022SIN ———=

https://nccgroup.wd3.myworkdayjobs.com/en-US/NCC_Group/details/Exploit-Developer_R6065
https://talonvoice.com/

HITBSecConf
2022 Singapore

#HITB2022SIN ——

https://talonvoice.com/

