
Exploiting a limited kernel UAF on Ubuntu 22.04Exploiting a limited kernel UAF on Ubuntu 22.04
Settlers of NetlinkSettlers of Netlink



Exploiting a limited kernel UAF on Ubuntu 22.04Exploiting a limited kernel UAF on Ubuntu 22.04
Settlers of NetlinkSettlers of NetlinkIntroductionIntroduction



IntroductionIntroduction

About

NCC Group - Exploit Development Group

Recently working on Pwn2Own competitions

Aaron Adams

Pwn2Own Austin 2021: Western Digital NAS and Lexmark printer

Blogs here, here, and here

@fidgetingbits, aaron.adams@nccgroup.com

3 / 82

https://research.nccgroup.com/2022/03/24/remote-code-execution-on-western-digital-pr4100-nas-cve-2022-23121/
https://research.nccgroup.com/2022/02/17/bypassing-software-update-package-encryption-extracting-the-lexmark-mc3224i-printer-firmware-part-1/
https://research.nccgroup.com/2022/02/18/analyzing-a-pjl-directory-traversal-vulnerability-exploiting-the-lexmark-mc3224i-printer-part-2/


About

NCC Group - Exploit Development Group

Recently working on Pwn2Own competitions

Aaron Adams

Pwn2Own Austin 2021: Western Digital NAS and Lexmark printer

Blogs here, here, and here

@fidgetingbits, aaron.adams@nccgroup.com

3 / 82

Pwn2Own Desktop 2022

Originally found and exploited one bug

4 / 82

https://research.nccgroup.com/2022/03/24/remote-code-execution-on-western-digital-pr4100-nas-cve-2022-23121/
https://research.nccgroup.com/2022/02/17/bypassing-software-update-package-encryption-extracting-the-lexmark-mc3224i-printer-firmware-part-1/
https://research.nccgroup.com/2022/02/18/analyzing-a-pjl-directory-traversal-vulnerability-exploiting-the-lexmark-mc3224i-printer-part-2/


Pwn2Own Desktop 2022

Originally found and exploited one bug

4 / 82

Pwn2Own Desktop 2022

Originally found and exploited one bug

Publicly patched before competition (CVE-2022-0185)

4 / 82

https://www.willsroot.io/2022/01/cve-2022-0185.html


Pwn2Own Desktop 2022

Originally found and exploited one bug

Publicly patched before competition (CVE-2022-0185)

4 / 82

Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Publicly patched before competition (CVE-2022-0185)

4 / 82

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html


Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Publicly patched before competition (CVE-2022-0185)

4 / 82

Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Publicly patched before competition (CVE-2022-0185)

Publicly patched before we were finished (CVE-2022-0995)

4 / 82

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995


Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Publicly patched before competition (CVE-2022-0185)

Publicly patched before we were finished (CVE-2022-0995)

4 / 82

Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Started exploiting third bug...

Publicly patched before competition (CVE-2022-0185)

Publicly patched before we were finished (CVE-2022-0995)

4 / 82

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995


Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Started exploiting third bug...

Publicly patched before competition (CVE-2022-0185)

Publicly patched before we were finished (CVE-2022-0995)

4 / 82

Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Started exploiting third bug...

Publicly patched before competition (CVE-2022-0185)

Publicly patched before we were finished (CVE-2022-0995)

Fell short by about a week :(

4 / 82

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995


Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Started exploiting third bug...

Publicly patched before competition (CVE-2022-0185)

Publicly patched before we were finished (CVE-2022-0995)

Fell short by about a week :(

4 / 82

Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Started exploiting third bug...

We decided to disclose the bug anyway

This talk is about the third bug (CVE-2022-32250)

Publicly patched before competition (CVE-2022-0185)

Publicly patched before we were finished (CVE-2022-0995)

Fell short by about a week :(

We targeted Ubuntu 22.04 Kernel 5.15

4 / 82

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995
https://www.openwall.com/lists/oss-security/2022/05/31/1
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995


Pwn2Own Desktop 2022

Originally found and exploited one bug

Started exploiting a second bug we found

Started exploiting third bug...

We decided to disclose the bug anyway

This talk is about the third bug (CVE-2022-32250)

Publicly patched before competition (CVE-2022-0185)

Publicly patched before we were finished (CVE-2022-0995)

Fell short by about a week :(

We targeted Ubuntu 22.04 Kernel 5.15

4 / 82

Tooling: Basic

gdb and pwndbg

qemu and vmware

pahole

CodeQL

rp rop gadget hunter

vmlinux-gdb.py

5 / 82

https://www.openwall.com/lists/oss-security/2022/05/31/1
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://github.com/Bonfee/CVE-2022-0995
https://github.com/0vercl0k/rp


Tooling: Basic

gdb and pwndbg

qemu and vmware

pahole

CodeQL

rp rop gadget hunter

vmlinux-gdb.py

5 / 82

Tooling: SLUB Allocation Analysis

We found ftrace left something to be desired

Found slabdbg, but ARM only

Pull request for x64 support, but broken on newer kernels

We wrote our own new library libslub

Will be made publicly available at some point

Functionally similar to our other public heap analysis plugins:

Freelist encoding, etc

Inspired by slabdbg

But lots more analysis functionality

libptmalloc

libdlmalloc

libtalloc

6 / 82

https://github.com/0vercl0k/rp
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://github.com/Kyle-Kyle/slabdbg
https://github.com/nccgroup/libptmalloc
https://github.com/nccgroup/libdlmalloc
https://github.com/nccgroup/libtalloc


Tooling: SLUB Allocation Analysis

We found ftrace left something to be desired

Found slabdbg, but ARM only

Pull request for x64 support, but broken on newer kernels

We wrote our own new library libslub

Will be made publicly available at some point

Functionally similar to our other public heap analysis plugins:

Freelist encoding, etc

Inspired by slabdbg

But lots more analysis functionality

libptmalloc

libdlmalloc

libtalloc

6 / 82




Talk Overview

Introduction
Linux netlink/netfilter Recap
Bug Analysis
Exploitation approach
Patch Analysis
Conclusions

7 / 82

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://github.com/Kyle-Kyle/slabdbg
https://github.com/nccgroup/libptmalloc
https://github.com/nccgroup/libdlmalloc
https://github.com/nccgroup/libtalloc





Talk Overview

Introduction
Linux netlink/netfilter Recap
Bug Analysis
Exploitation approach
Patch Analysis
Conclusions

7 / 82

netlink / netfilter / nf_tablesnetlink / netfilter / nf_tables



netlink / netfilter / nf_tablesnetlink / netfilter / nf_tables

nf_tables Userland Usage

nft command-line interface for interacting with firewall

Drop input to a TCP port: nft add rule ip filter input tcp dport 80 drop

Well documented tool

We are interested in what's underneath...

9 / 82

https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes


nf_tables Userland Usage

nft command-line interface for interacting with firewall

Drop input to a TCP port: nft add rule ip filter input tcp dport 80 drop

Well documented tool

We are interested in what's underneath...

9 / 82

nf_tables Kernel Overview

netlink is a socket-based communication mechanism

Allows userland to control various network functionality in the kernel

libmnl helper
library

10 / 82

https://wiki.nftables.org/wiki-nftables/index.php/Quick_reference-nftables_in_10_minutes
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html


nf_tables Kernel Overview

netlink is a socket-based communication mechanism

Allows userland to control various network functionality in the kernel

libmnl helper
library

10 / 82

nf_tables Kernel Overview

netlink is a socket-based communication mechanism

Allows userland to control various network functionality in the kernel

libmnl helper
library

netfilter is a network filtering mechanism in the kernel

Functionality exposed via netlink

Hooks into tons of the linux network subsystem

Responsible for connection tracking, NAT, nf_tables, etc

10 / 82

https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/


nf_tables Kernel Overview

netlink is a socket-based communication mechanism

Allows userland to control various network functionality in the kernel

libmnl helper
library

netfilter is a network filtering mechanism in the kernel

Functionality exposed via netlink

Hooks into tons of the linux network subsystem

Responsible for connection tracking, NAT, nf_tables, etc

10 / 82

nf_tables Kernel Overview

netlink is a socket-based communication mechanism

Allows userland to control various network functionality in the kernel

libmnl helper
library

netfilter is a network filtering mechanism in the kernel

Functionality exposed via netlink

Hooks into tons of the linux network subsystem

Responsible for connection tracking, NAT, nf_tables, etc

nf_tables is
the next generation firewall

Filtering subsystem that replaced iptables

libnftnl helper
library

10 / 82

https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://www.netfilter.org/projects/libnftnl/index.html


nf_tables Kernel Overview

netlink is a socket-based communication mechanism

Allows userland to control various network functionality in the kernel

libmnl helper
library

netfilter is a network filtering mechanism in the kernel

Functionality exposed via netlink

Hooks into tons of the linux network subsystem

Responsible for connection tracking, NAT, nf_tables, etc

nf_tables is
the next generation firewall

Filtering subsystem that replaced iptables

libnftnl helper
library

10 / 82

nf_tables Kernel Overview

netlink is a socket-based communication mechanism

Allows userland to control various network functionality in the kernel

libmnl helper
library

netfilter is a network filtering mechanism in the kernel

Functionality exposed via netlink

Hooks into tons of the linux network subsystem

Responsible for connection tracking, NAT, nf_tables, etc

nf_tables is
the next generation firewall

Filtering subsystem that replaced iptables

libnftnl helper
library

All exposed via CAP_NET_ADMIN

Accessible from unprivileged user or network namespace

10 / 82

https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://www.netfilter.org/projects/libnftnl/index.html
https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://www.netfilter.org/projects/libnftnl/index.html


nf_tables Kernel Overview

netlink is a socket-based communication mechanism

Allows userland to control various network functionality in the kernel

libmnl helper
library

netfilter is a network filtering mechanism in the kernel

Functionality exposed via netlink

Hooks into tons of the linux network subsystem

Responsible for connection tracking, NAT, nf_tables, etc

nf_tables is
the next generation firewall

Filtering subsystem that replaced iptables

libnftnl helper
library

All exposed via CAP_NET_ADMIN

Accessible from unprivileged user or network namespace

10 / 82

Recent netfilter/nf_tables vulnerabilities

March 2022: Nick Gregory

April 2022: David Bouman

May 2022: @bienpnn Team Orca of Sea Security (Pwn2Own Desktop 2022)

June 2022: @ezrak1e Ant Group Light-Year Security Lab

June 2022: Arthur Mongodin RANDORISEC

July 2022: Arthur Mongodin RANDORISEC

Documented nf_tables in great detail

Highly recommended reading as background for our research

11 / 82

https://man7.org/linux/man-pages/man7/netlink.7.html
https://www.netfilter.org/projects/libmnl/index.html
https://www.netfilter.org/
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://www.netfilter.org/projects/libnftnl/index.html
https://nickgregory.me/post/2022/03/12/cve-2022-25636/
https://blog.dbouman.nl/2022/04/02/How-The-Tables-Have-Turned-CVE-2022-1015-1016/
https://www.openwall.com/lists/oss-security/2022/08/09/5
https://seclists.org/oss-sec/2022/q2/164
https://www.randorisec.fr/pt/yet-another-bug-netfilter/
https://www.randorisec.fr/pt/crack-linux-firewall/


Recent netfilter/nf_tables vulnerabilities

March 2022: Nick Gregory

April 2022: David Bouman

May 2022: @bienpnn Team Orca of Sea Security (Pwn2Own Desktop 2022)

June 2022: @ezrak1e Ant Group Light-Year Security Lab

June 2022: Arthur Mongodin RANDORISEC

July 2022: Arthur Mongodin RANDORISEC

Documented nf_tables in great detail

Highly recommended reading as background for our research

11 / 82

Important nf_tables Terms and Structures

Tables (struct nft_table)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

12 / 82

https://nickgregory.me/post/2022/03/12/cve-2022-25636/
https://blog.dbouman.nl/2022/04/02/How-The-Tables-Have-Turned-CVE-2022-1015-1016/
https://www.openwall.com/lists/oss-security/2022/08/09/5
https://seclists.org/oss-sec/2022/q2/164
https://www.randorisec.fr/pt/yet-another-bug-netfilter/
https://www.randorisec.fr/pt/crack-linux-firewall/
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables


Important nf_tables Terms and Structures

Tables (struct nft_table)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

12 / 82

Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

12 / 82

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains


Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

12 / 82

Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Rules (struct nft_rule)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

Holds groups of expressions for processing packets

12 / 82

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management


Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Rules (struct nft_rule)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

Holds groups of expressions for processing packets

12 / 82

Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Rules (struct nft_rule)

Expressions (struct nft_expr)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

Holds groups of expressions for processing packets

We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit

12 / 82

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals


Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Rules (struct nft_rule)

Expressions (struct nft_expr)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

Holds groups of expressions for processing packets

We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit

12 / 82

Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Rules (struct nft_rule)

Expressions (struct nft_expr)

Sets (struct nft_set)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

Holds groups of expressions for processing packets

We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit

Tracks a set of data elements associated with a rule or table (ex: list of ports, ips, etc)

12 / 82

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Sets


Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Rules (struct nft_rule)

Expressions (struct nft_expr)

Sets (struct nft_set)

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

Holds groups of expressions for processing packets

We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit

Tracks a set of data elements associated with a rule or table (ex: list of ports, ips, etc)

12 / 82

Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Rules (struct nft_rule)

Expressions (struct nft_expr)

Sets (struct nft_set)

Elements

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

Holds groups of expressions for processing packets

We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit

Tracks a set of data elements associated with a rule or table (ex: list of ports, ips, etc)

Data tracked by a set in special high-performance data structures

12 / 82

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Sets
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Sets
https://wiki.nftables.org/wiki-nftables/index.php/Sets


Important nf_tables Terms and Structures

Tables (struct nft_table)

Chains (struct nft_chain)

Rules (struct nft_rule)

Expressions (struct nft_expr)

Sets (struct nft_set)

Elements

Holds groups of chains associated with a specific network protocol (ie: ip, ip6)

Holds groups of rules for processing specific protocol traffic according to a policy (ie: accept, drop)

Holds groups of expressions for processing packets

We are interested in struct nft_dynset, struct nft_lookup, struct nft_connlimit

Tracks a set of data elements associated with a rule or table (ex: list of ports, ips, etc)

Data tracked by a set in special high-performance data structures

12 / 82

Set: struct nft_set

13 / 82

https://wiki.nftables.org/wiki-nftables/index.php/Configuring_tables
https://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains
https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management
https://wiki.nftables.org/wiki-nftables/index.php/Portal:DeveloperDocs/nftables_internals
https://wiki.nftables.org/wiki-nftables/index.php/Sets
https://wiki.nftables.org/wiki-nftables/index.php/Sets


Set: struct nft_set

13 / 82

struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

14 / 82



struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

14 / 82

struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

14 / 82



struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

14 / 82

struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

14 / 82



struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

14 / 82

struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

14 / 82



struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

14 / 82

struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

udata: A pointer into the set's inline data[] array

14 / 82



struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

udata: A pointer into the set's inline data[] array

14 / 82

struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

udata: A pointer into the set's inline data[] array

udlen: The length of user data stored in the set's data array

14 / 82



struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

udata: A pointer into the set's inline data[] array

udlen: The length of user data stored in the set's data array

14 / 82

struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

udata: A pointer into the set's inline data[] array

udlen: The length of user data stored in the set's data array

ops: A function table pointer for operating on the set

14 / 82



struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

udata: A pointer into the set's inline data[] array

udlen: The length of user data stored in the set's data array

ops: A function table pointer for operating on the set

14 / 82

struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

Allocated kmalloc-512 by default

Variable length user data can bump it to be placed on kmalloc-1k

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

udata: A pointer into the set's inline data[] array

udlen: The length of user data stored in the set's data array

ops: A function table pointer for operating on the set

14 / 82



struct nft_set Members of Interest

During exploitation we are especially interested in the following nft_set members:

Allocated kmalloc-512 by default

Variable length user data can bump it to be placed on kmalloc-1k

list: Doubly linked list of nft_set structures associated with the same table

bindings: Doubly linked list of expressions that are bound to this set

name: Name of the set used for lookups in API

use: Counter indicating the number of external references

udata: A pointer into the set's inline data[] array

udlen: The length of user data stored in the set's data array

ops: A function table pointer for operating on the set

14 / 82

A closer look at nft_set->bindings

Expressions bound to a set end up on set->bindings doubly-linked list

Expressions will contain a struct nft_set_binding member

So set->bindings entries will point into list member above

15 / 82



A closer look at nft_set->bindings

Expressions bound to a set end up on set->bindings doubly-linked list

Expressions will contain a struct nft_set_binding member

So set->bindings entries will point into list member above

15 / 82

Expression: struct nft_expr

All expression types extend struct nft_expr, and are stored in data member

Typical use:

Noteworthy because size overhead influences slab cache selection

16 / 82



Expression: struct nft_expr

All expression types extend struct nft_expr, and are stored in data member

Typical use:

Noteworthy because size overhead influences slab cache selection

16 / 82

Lookup Expression: struct nft_lookup

Fetches of value from a key in the specified set

Allocated on kmalloc-48 slab cache

We are interested in binding being at offset 0x10

17 / 82



Lookup Expression: struct nft_lookup

Fetches of value from a key in the specified set

Allocated on kmalloc-48 slab cache

We are interested in binding being at offset 0x10

17 / 82

Dynamic Set Expression: struct nft_dynset

Allows expressions to be associated with set elements

Allocated on kmalloc-96 slab cache

We are interested in binding being at offset 0x38

18 / 82



Dynamic Set Expression: struct nft_dynset

Allows expressions to be associated with set elements

Allocated on kmalloc-96 slab cache

We are interested in binding being at offset 0x38

18 / 82

Normal Set Expression Binding Relationship

19 / 82



Normal Set Expression Binding Relationship

19 / 82

Table With Linked Sets

20 / 82



Table With Linked Sets

20 / 82

Embedding Expressions in Sets

Set's support embedding expressions during creation

Similar to a "dynset" expression

Expressions will be run when elements in the set are updated

Only specific types of expressions can be embedded in a set

Expression must be "stateful" (ie: a counter)

21 / 82



Embedding Expressions in Sets

Set's support embedding expressions during creation

Similar to a "dynset" expression

Expressions will be run when elements in the set are updated

Only specific types of expressions can be embedded in a set

Expression must be "stateful" (ie: a counter)

21 / 82

CVE-2022-32250CVE-2022-32250



CVE-2022-32250CVE-2022-32250

Bug Overview

Original disclosure here

Found with syzkaller

UAF while handling expressions on set->bindings list

Writes one uncontrolled pointer to an uncontrolled offset

No repro could be generated

Triaged manually

23 / 82

https://seclists.org/oss-sec/2022/q2/159


Bug Overview

Original disclosure here

Found with syzkaller

UAF while handling expressions on set->bindings list

Writes one uncontrolled pointer to an uncontrolled offset

No repro could be generated

Triaged manually

23 / 82

Bug Overview

Original disclosure here

Found with syzkaller

UAF while handling expressions on set->bindings list

Writes one uncontrolled pointer to an uncontrolled offset

@dvyukov noticed after our disclosure that syzbot found it in November 2021

No repro could be generated

Triaged manually

Automatically closed as invalid

23 / 82

https://seclists.org/oss-sec/2022/q2/159
https://seclists.org/oss-sec/2022/q2/159
https://twitter.com/dvyukov/status/1544222911346757633
https://syzkaller.appspot.com/bug?extid=4bf3063945424e8d8af3


Bug Overview

Original disclosure here

Found with syzkaller

UAF while handling expressions on set->bindings list

Writes one uncontrolled pointer to an uncontrolled offset

@dvyukov noticed after our disclosure that syzbot found it in November 2021

No repro could be generated

Triaged manually

Automatically closed as invalid

23 / 82

Initialize Expression First, Check Validity After

24 / 82

https://seclists.org/oss-sec/2022/q2/159
https://twitter.com/dvyukov/status/1544222911346757633
https://syzkaller.appspot.com/bug?extid=4bf3063945424e8d8af3


Initialize Expression First, Check Validity After

24 / 82

Indirect Expression Destruction

nft_expr_destroy() calls into expression-specific destroy function

25 / 82



Indirect Expression Destruction

nft_expr_destroy() calls into expression-specific destroy function

25 / 82

Lookup and Dynset Expressions

Both of these expressions look up a set when initialized

Added to the set->bindings on initialization via nf_tables_bind_set()

But, their destroy method called by nft_expr_destroy() won't remove them from set->bindings list

26 / 82



Lookup and Dynset Expressions

Both of these expressions look up a set when initialized

Added to the set->bindings on initialization via nf_tables_bind_set()

But, their destroy method called by nft_expr_destroy() won't remove them from set->bindings list

26 / 82

Lookup and Dynset Expressions

Both of these expressions look up a set when initialized

Added to the set->bindings on initialization via nf_tables_bind_set()

But, their destroy method called by nft_expr_destroy() won't remove them from set->bindings list

UAF on subsequent set->bindings use

List updates add or remove struct nft_set_binding linkage

Ability to write address of set, or another expressions, to freed memory

26 / 82



Lookup and Dynset Expressions

Both of these expressions look up a set when initialized

Added to the set->bindings on initialization via nf_tables_bind_set()

But, their destroy method called by nft_expr_destroy() won't remove them from set->bindings list

UAF on subsequent set->bindings use

List updates add or remove struct nft_set_binding linkage

Ability to write address of set, or another expressions, to freed memory

26 / 82

Dynset Expression: Initialization

27 / 82



Dynset Expression: Initialization

27 / 82

Dynset Expression: Destruction

"dynset" expression is not unbound from this set when destroyed

Normally would be done by nf_tables_unbind_set()


Set destruction doesn't happen since set->bindings is not empty

28 / 82



Dynset Expression: Destruction

"dynset" expression is not unbound from this set when destroyed

Normally would be done by nf_tables_unbind_set()


Set destruction doesn't happen since set->bindings is not empty

28 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

29 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

29 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

29 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set

Embedded expression references valid set

Added to the set->bindings list of referenced set on initialization

Immediately destroyed after initialization, but not removed from set->bindings

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set

Embedded expression references valid set

Added to the set->bindings list of referenced set on initialization

Immediately destroyed after initialization, but not removed from set->bindings

29 / 82

Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set

Destroy first expression on set->bindings

Embedded expression references valid set

Added to the set->bindings list of referenced set on initialization

Immediately destroyed after initialization, but not removed from set->bindings

UAF when updating dangling expression with new prev pointer

29 / 82



Example: How to Write Set Address to a Free Chunk
Create a valid set that expressions we initialize can reference

Bind a expression to the valid set, to populate set->bindings with one entry

Create a new invalid set

Embed "lookup" or "dynset" expression in the invalid set

Destroy first expression on set->bindings

Embedded expression references valid set

Added to the set->bindings list of referenced set on initialization

Immediately destroyed after initialization, but not removed from set->bindings

UAF when updating dangling expression with new prev pointer

29 / 82

Non-Stateful Expression Added to Bindings List

30 / 82



Non-Stateful Expression Added to Bindings List

30 / 82

Non-Stateful Expression Freed, Dangling On Bindings 

31 / 82



Non-Stateful Expression Freed, Dangling On Bindings 

31 / 82

UAF Write of New Expression Added to List

32 / 82



UAF Write of New Expression Added to List

32 / 82

Exploiting CVE-2022-32250Exploiting CVE-2022-32250



Exploiting CVE-2022-32250Exploiting CVE-2022-32250

Initial Exploitation Ideas

How to exploit this?

Ideas:

Constraints of where the pointer is written is quite limiting

Overwrite some length parameter with the pointer?

Overwrite some pointer with new pointer, and create better UAF?

Write pointer to buffer, and leak back to userland?

34 / 82



Initial Exploitation Ideas

How to exploit this?

Ideas:

Constraints of where the pointer is written is quite limiting

Overwrite some length parameter with the pointer?

Overwrite some pointer with new pointer, and create better UAF?

Write pointer to buffer, and leak back to userland?

34 / 82

Easy Win: Leak Some Address

Confirm mental model

Leak a set or expression address

How to leak the data?

Offset of bindings member

35 / 82



Easy Win: Leak Some Address

Confirm mental model

Leak a set or expression address

How to leak the data?

Offset of bindings member

35 / 82

Easy Win: Leak Some Address

Confirm mental model

Leak a set or expression address

How to leak the data?

Use popular struct user_key_payload technique

Offset of bindings member

add_key() syscall: Controlled size to get allocated on different slab caches

key_ctl(KEYCTL_READ): Can read payload contents at any time

35 / 82

https://zplin.me/papers/ELOISE.pdf


Easy Win: Leak Some Address

Confirm mental model

Leak a set or expression address

How to leak the data?

Use popular struct user_key_payload technique

Offset of bindings member

add_key() syscall: Controlled size to get allocated on different slab caches

key_ctl(KEYCTL_READ): Can read payload contents at any time

35 / 82

Easy Win: Leak Some Address

Confirm mental model

Leak a set or expression address

How to leak the data?

Use popular struct user_key_payload technique

Terminology:

Offset of bindings member

add_key() syscall: Controlled size to get allocated on different slab caches

key_ctl(KEYCTL_READ): Can read payload contents at any time

This stage will be UAF1

The set we leak will be referred to as SET1

35 / 82

https://zplin.me/papers/ELOISE.pdf
https://zplin.me/papers/ELOISE.pdf


Easy Win: Leak Some Address

Confirm mental model

Leak a set or expression address

How to leak the data?

Use popular struct user_key_payload technique

Terminology:

Offset of bindings member

add_key() syscall: Controlled size to get allocated on different slab caches

key_ctl(KEYCTL_READ): Can read payload contents at any time

This stage will be UAF1

The set we leak will be referred to as SET1

35 / 82

UAF1: SET1 Address Leak

36 / 82

https://zplin.me/papers/ELOISE.pdf


UAF1: SET1 Address Leak

36 / 82

UAF1: SET1 Address Leak

37 / 82



UAF1: SET1 Address Leak

37 / 82

UAF1: SET1 Address Leak

38 / 82



UAF1: SET1 Address Leak

38 / 82

UAF1: SET1 Address Leak

Possible to read the written address from userland

39 / 82



UAF1: SET1 Address Leak

Possible to read the written address from userland

39 / 82

Success, But What Next?

This SET1 address isn't useful for now...

Let's try to free some other object

But confirms stuff works as expected

40 / 82



Success, But What Next?

This SET1 address isn't useful for now...

Let's try to free some other object

But confirms stuff works as expected

40 / 82

Success, But What Next?

This SET1 address isn't useful for now...

Let's try to free some other object

Goal: Find an object on kmalloc-48 or kmalloc-96 with overlapping pointer
offsets

But confirms stuff works as expected

Constraint: overlapping pointer must be freeable on demand

Outcome: gives a new free primitive

40 / 82



Success, But What Next?

This SET1 address isn't useful for now...

Let's try to free some other object

Goal: Find an object on kmalloc-48 or kmalloc-96 with overlapping pointer
offsets

But confirms stuff works as expected

Constraint: overlapping pointer must be freeable on demand

Outcome: gives a new free primitive

40 / 82

Success, But What Next?

This SET1 address isn't useful for now...

Let's try to free some other object

Goal: Find an object on kmalloc-48 or kmalloc-96 with overlapping pointer
offsets

Two options of what to free using such a primitive:

We chose to use a set. See our blog for more details

But confirms stuff works as expected

Constraint: overlapping pointer must be freeable on demand

Outcome: gives a new free primitive

Free sizeof(expression) bytes @ &expression->bindings address (quirky)

Free sizeof(set) bytes @ &set->bindings address (better)

40 / 82



Success, But What Next?

This SET1 address isn't useful for now...

Let's try to free some other object

Goal: Find an object on kmalloc-48 or kmalloc-96 with overlapping pointer
offsets

Two options of what to free using such a primitive:

We chose to use a set. See our blog for more details

But confirms stuff works as expected

Constraint: overlapping pointer must be freeable on demand

Outcome: gives a new free primitive

Free sizeof(expression) bytes @ &expression->bindings address (quirky)

Free sizeof(set) bytes @ &set->bindings address (better)

40 / 82

Success, But What Next?

This SET1 address isn't useful for now...

Let's try to free some other object

Goal: Find an object on kmalloc-48 or kmalloc-96 with overlapping pointer
offsets

Two options of what to free using such a primitive:

We chose to use a set. See our blog for more details

Now to need to find a replacement object that gives us a free primitive

But confirms stuff works as expected

Constraint: overlapping pointer must be freeable on demand

Outcome: gives a new free primitive

Free sizeof(expression) bytes @ &expression->bindings address (quirky)

Free sizeof(set) bytes @ &set->bindings address (better)

CodeQL to the rescue

40 / 82



Ruling Out Freeing a Expression

Freeing an expression, although potentially useful, is more complicated

Opted to free set->bindings instead

Now to need to find a replacement object that gives us a free primitive

set->bindings is second member only (offset 0x10)

Freeing set->bindings makes controlling data easy, with no additional constraints

CodeQL to the rescue

46 / 82

Finding a Suitable Object Using CodeQL

Find 96-byte structures allocated on slab cache

Specific member offsets must be pointers

47 / 82



Finding a Suitable Object Using CodeQL

Find 96-byte structures allocated on slab cache

Specific member offsets must be pointers

47 / 82

Candidate: cgroup_fs_context

Allocated when creating a new cgroup

Lives on kmalloc-96, same as nft_dynset

cgroup_fs_context->release_agent overlaps with nft_dynset->bindings->prev

Exposed via fd = syscall(__NR_fsopen, "cgroup2", 0);

Free on demand by destroying the cgroup: close(fd);

48 / 82

https://man7.org/linux/man-pages/man7/cgroups.7.html


Candidate: cgroup_fs_context

Allocated when creating a new cgroup

Lives on kmalloc-96, same as nft_dynset

cgroup_fs_context->release_agent overlaps with nft_dynset->bindings->prev

Exposed via fd = syscall(__NR_fsopen, "cgroup2", 0);

Free on demand by destroying the cgroup: close(fd);

48 / 82

struct cgroup_fs_context

49 / 82

https://man7.org/linux/man-pages/man7/cgroups.7.html


struct cgroup_fs_context

49 / 82

Freeing release_agent

50 / 82



Freeing release_agent

50 / 82

Preparing a Set Freeing Primitive

We will refer to this phase as UAF2

We will refer to this freed set as SET2

51 / 82



Preparing a Set Freeing Primitive

We will refer to this phase as UAF2

We will refer to this freed set as SET2

51 / 82

UAF2: release_agent Overwrite

Trigger set->bindings UAF with a nft_dynset expression

52 / 82



UAF2: release_agent Overwrite

Trigger set->bindings UAF with a nft_dynset expression

52 / 82

UAF2: release_agent Overwrite

Replace nft_dynset with a cgroup_fs_context

53 / 82



UAF2: release_agent Overwrite

Replace nft_dynset with a cgroup_fs_context

53 / 82

UAF2: release_agent Overwrite

Remove an entry from the set->bindings

54 / 82



UAF2: release_agent Overwrite

Remove an entry from the set->bindings

54 / 82

UAF2: release_agent Overwrite

Overwrite cgroup_fs_context->release_agent with &set->bindings->next

55 / 82



UAF2: release_agent Overwrite

Overwrite cgroup_fs_context->release_agent with &set->bindings->next

55 / 82

Freeing and Replacing a Set

We will refer to this phase as UAF3

We will refer to the replaced SET2 as FAKESET1

56 / 82



Freeing and Replacing a Set

We will refer to this phase as UAF3

We will refer to the replaced SET2 as FAKESET1

56 / 82

UAF3: FAKESET1 to Bypass KASLR

Destroying the cgroup will free SET2

57 / 82



UAF3: FAKESET1 to Bypass KASLR

Destroying the cgroup will free SET2

57 / 82

UAF3: FAKESET1 to Bypass KASLR

58 / 82



UAF3: FAKESET1 to Bypass KASLR

58 / 82

UAF3: FAKESET1 to Bypass KASLR

We can replace freed SET2+0x10 chunk via FUSE and setxattr()

59 / 82

https://www.graplsecurity.com/post/iou-ring-exploiting-the-linux-kernel


UAF3: FAKESET1 to Bypass KASLR

We can replace freed SET2+0x10 chunk via FUSE and setxattr()

59 / 82

SET1 Memory Revelation

We already know address of SET1, thanks to UAF1

The address we leaked with keyctl(KEYCTL_READ)

60 / 82

https://www.graplsecurity.com/post/iou-ring-exploiting-the-linux-kernel


SET1 Memory Revelation

We already know address of SET1, thanks to UAF1

The address we leaked with keyctl(KEYCTL_READ)

60 / 82

SET1 Memory Revelation

We already know address of SET1, thanks to UAF1

Replace SET2 with FAKESET1

The address we leaked with keyctl(KEYCTL_READ)

Use setxattr() call that blocks the kernel waiting on a controlled FUSE server

60 / 82



SET1 Memory Revelation

We already know address of SET1, thanks to UAF1

Replace SET2 with FAKESET1

The address we leaked with keyctl(KEYCTL_READ)

Use setxattr() call that blocks the kernel waiting on a controlled FUSE server

60 / 82

SET1 Memory Revelation

We already know address of SET1, thanks to UAF1

Replace SET2 with FAKESET1

FAKESET1->udata points to SET1

FAKESET1->udlen at least sizeof(SET1)

FAKESET1->name points to somewhere in SET1->data[] contents

The address we leaked with keyctl(KEYCTL_READ)

Use setxattr() call that blocks the kernel waiting on a controlled FUSE server

This lets us continue lookup FAKESET1 via netlink

60 / 82



SET1 Memory Revelation

We already know address of SET1, thanks to UAF1

Replace SET2 with FAKESET1

FAKESET1->udata points to SET1

FAKESET1->udlen at least sizeof(SET1)

FAKESET1->name points to somewhere in SET1->data[] contents

The address we leaked with keyctl(KEYCTL_READ)

Use setxattr() call that blocks the kernel waiting on a controlled FUSE server

This lets us continue lookup FAKESET1 via netlink

60 / 82

SET1 Memory Revelation

We already know address of SET1, thanks to UAF1

Replace SET2 with FAKESET1

FAKESET1->udata points to SET1

FAKESET1->udlen at least sizeof(SET1)

FAKESET1->name points to somewhere in SET1->data[] contents

Leak full SET1 contents

Leaks nf_tables.ko's .data pointer via SET1->ops

The address we leaked with keyctl(KEYCTL_READ)

Use setxattr() call that blocks the kernel waiting on a controlled FUSE server

This lets us continue lookup FAKESET1 via netlink

Fairly limited for ROP gadgets

60 / 82



SET1 Memory Revelation

We already know address of SET1, thanks to UAF1

Replace SET2 with FAKESET1

FAKESET1->udata points to SET1

FAKESET1->udlen at least sizeof(SET1)

FAKESET1->name points to somewhere in SET1->data[] contents

Leak full SET1 contents

Leaks nf_tables.ko's .data pointer via SET1->ops

The address we leaked with keyctl(KEYCTL_READ)

Use setxattr() call that blocks the kernel waiting on a controlled FUSE server

This lets us continue lookup FAKESET1 via netlink

Fairly limited for ROP gadgets

60 / 82

UAF3: FAKESET1 to Bypass KASLR

61 / 82



UAF3: FAKESET1 to Bypass KASLR

61 / 82

Even Better Memory Revelation

We can do better...

62 / 82



Even Better Memory Revelation

We can do better...

62 / 82

Even Better Memory Revelation

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

Allows us to craft future fake ops at known memory address

62 / 82



Even Better Memory Revelation

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

Allows us to craft future fake ops at known memory address

62 / 82

Even Better Memory Revelation

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

FAKESET1->udlen is not limited to sizeof(SET1)

We can also leak objects adjacent to SET1

Allows us to craft future fake ops at known memory address

62 / 82



Even Better Memory Revelation

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

FAKESET1->udlen is not limited to sizeof(SET1)

We can also leak objects adjacent to SET1

Allows us to craft future fake ops at known memory address

62 / 82

Even Better Memory Revelation

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

FAKESET1->udlen is not limited to sizeof(SET1)

We can also leak objects adjacent to SET1

Spray tty objects prior to SET1 creation

Allows us to craft future fake ops at known memory address

open("/dev/ptmx", O_RDWR|O_NOCTTY);

Places tty_struct on kmalloc-1k

62 / 82

https://haxx.in/posts/pwning-tipc/


Even Better Memory Revelation

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

FAKESET1->udlen is not limited to sizeof(SET1)

We can also leak objects adjacent to SET1

Spray tty objects prior to SET1 creation

Allows us to craft future fake ops at known memory address

open("/dev/ptmx", O_RDWR|O_NOCTTY);

Places tty_struct on kmalloc-1k

62 / 82

Even Better Memory Revelation

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

FAKESET1->udlen is not limited to sizeof(SET1)

We can also leak objects adjacent to SET1

Spray tty objects prior to SET1 creation

Allows us to leak address from vmlinux (Better ROP gadgets)

Allows us to craft future fake ops at known memory address

open("/dev/ptmx", O_RDWR|O_NOCTTY);

Places tty_struct on kmalloc-1k

62 / 82

https://haxx.in/posts/pwning-tipc/
https://haxx.in/posts/pwning-tipc/


Even Better Memory Revelation

We can do better...

nft_set->list, linked list of sets on a table

Create SET1 and SET2 on same table

Leaking SET1->list->next gives us address of SET2 (aka FAKESET1)

FAKESET1->udlen is not limited to sizeof(SET1)

We can also leak objects adjacent to SET1

Spray tty objects prior to SET1 creation

Allows us to leak address from vmlinux (Better ROP gadgets)

Allows us to craft future fake ops at known memory address

open("/dev/ptmx", O_RDWR|O_NOCTTY);

Places tty_struct on kmalloc-1k

62 / 82

UAF3: FAKESET1 to Bypass KASLR

63 / 82

https://haxx.in/posts/pwning-tipc/


UAF3: FAKESET1 to Bypass KASLR

63 / 82

UAF4: Getting Code Execution

Now to put new KASLR-adjusted pointers in controlled memory

64 / 82



UAF4: Getting Code Execution

Now to put new KASLR-adjusted pointers in controlled memory

64 / 82

UAF4: Getting Code Execution

Now to put new KASLR-adjusted pointers in controlled memory

We just leaked the address of FAKESET1

We control when FAKESET1 is freed

Thanks to FUSE and setxattr()

64 / 82



UAF4: Getting Code Execution

Now to put new KASLR-adjusted pointers in controlled memory

We just leaked the address of FAKESET1

We control when FAKESET1 is freed

Thanks to FUSE and setxattr()

64 / 82

UAF4: Getting Code Execution

Now to put new KASLR-adjusted pointers in controlled memory

We just leaked the address of FAKESET1

We control when FAKESET1 is freed

Can replace FAKESET1 again with new data

FAKESET2->ops points to a fake table in FAKESET2->data

Thanks to FUSE and setxattr()

We refer to this as UAF4

We will refer to the replaced FAKESET1 as FAKESET2

64 / 82



UAF4: Getting Code Execution

Now to put new KASLR-adjusted pointers in controlled memory

We just leaked the address of FAKESET1

We control when FAKESET1 is freed

Can replace FAKESET1 again with new data

FAKESET2->ops points to a fake table in FAKESET2->data

Thanks to FUSE and setxattr()

We refer to this as UAF4

We will refer to the replaced FAKESET1 as FAKESET2

64 / 82

UAF4: FAKESET1 Replacement With FAKESET2

65 / 82



UAF4: FAKESET1 Replacement With FAKESET2

65 / 82

UAF4: FAKESET1 Replacement With FAKESET2

66 / 82



UAF4: FAKESET1 Replacement With FAKESET2

66 / 82

ROP Gadget Hunting

nft_set->ops function call register constraints are mostly:

FAKESET2 completely controlled

Find a gadget that does something interesting with this data

Preferably fetch controlled pointer and then write there controlled data

We did manual hunting using public tools rp

Some functions: rdi, r14 points to FAKESET2

Other functions: rsi, r12 points to FAKESET2

So most offsets into the object could be useful

67 / 82

https://github.com/0vercl0k/rp


ROP Gadget Hunting

nft_set->ops function call register constraints are mostly:

FAKESET2 completely controlled

Find a gadget that does something interesting with this data

Preferably fetch controlled pointer and then write there controlled data

We did manual hunting using public tools rp

Some functions: rdi, r14 points to FAKESET2

Other functions: rsi, r12 points to FAKESET2

So most offsets into the object could be useful

67 / 82

__hlist_del gadget

Function offsets happen to perfectly overlap with controlled set values

68 / 82

https://github.com/0vercl0k/rp


__hlist_del gadget

Function offsets happen to perfectly overlap with controlled set values

68 / 82

Unsafe Double Unlink

Double unlink will OOPS after our controlled write!

Problem? Nope...

Quite similar to recent STAR Labs io_uring __list_del technique

Ubuntu uses panic_on_oops=0 sysctl so we don't actually care

But we don't leak or need physmap

69 / 82

https://starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt


Unsafe Double Unlink

Double unlink will OOPS after our controlled write!

Problem? Nope...

Quite similar to recent STAR Labs io_uring __list_del technique

Ubuntu uses panic_on_oops=0 sysctl so we don't actually care

But we don't leak or need physmap

69 / 82

Invoking Gadget

We chose to use nft_set->ops->gc_init() to trigger ROP gadget

Require some setup and explicit expression type to trigger

Requires an expression with NFT_EXPR_GC flag

nft_connlimit is only one with this flag

If flag set, gc_init() invoked during expression initialization

70 / 82

https://starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt


Invoking Gadget

We chose to use nft_set->ops->gc_init() to trigger ROP gadget

Require some setup and explicit expression type to trigger

Requires an expression with NFT_EXPR_GC flag

nft_connlimit is only one with this flag

If flag set, gc_init() invoked during expression initialization

70 / 82

Targeting modprobe_path

We chose to write to modprobe_path for quick win

Well documented and widely used technique by now

We write a 8-byte address that we can also use as a string

Obviously some real-world limitations

Overwrite kernel string holding binary path, execute new path as root

Ex: /tmp/x\0

/tmp/ mounted as non-executable, etc

Per-container temporary folder different from executing context

71 / 82

https://sam4k.com/like-techniques-modprobe_path/


Targeting modprobe_path

We chose to write to modprobe_path for quick win

Well documented and widely used technique by now

We write a 8-byte address that we can also use as a string

Obviously some real-world limitations

Overwrite kernel string holding binary path, execute new path as root

Ex: /tmp/x\0

/tmp/ mounted as non-executable, etc

Per-container temporary folder different from executing context

71 / 82

UAF4: FAKESET2 For Code Execution

72 / 82

https://sam4k.com/like-techniques-modprobe_path/


UAF4: FAKESET2 For Code Execution

72 / 82

Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

73 / 82



Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

73 / 82

Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

73 / 82



Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

73 / 82

Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory

73 / 82



Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory

73 / 82

Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory

UAF4: Replace FAKESET1 with FAKESET2 and ops now pointing to valid gadget

73 / 82



Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory

UAF4: Replace FAKESET1 with FAKESET2 and ops now pointing to valid gadget

73 / 82

Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory

UAF4: Replace FAKESET1 with FAKESET2 and ops now pointing to valid gadget

Trigger gc_init() to overwrite modprobe_path

Trigger module load from userland and get root

73 / 82



Putting It All Together

Trigger 4 UAF scenarios

UAF1: Replace nft_dynset with user_key_payload and leak SET1 address

UAF2: Replace nft_dynset with cgroup_fs_context and overwrite cgroup_fs_context->release_agent

UAF3: Destroy cgroup to free SET2 and replace with FAKESET1

Bypass KASLR and leak address of SET2 and by ""reading SET1 and adjacent slab memory

UAF4: Replace FAKESET1 with FAKESET2 and ops now pointing to valid gadget

Trigger gc_init() to overwrite modprobe_path

Trigger module load from userland and get root

73 / 82

AftermathAftermath



AftermathAftermath

Patch Analysis

Prevented the initialization of any non-stateful expression during set creation

This should actually kill a lot of underlying bugs

BONUS: Fix also stops a separate reference counting bug we had found

Fixed here

75 / 82

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/net/netfilter?id=520778042ccca019f3ffa136dd0ca565c486cedd


Patch Analysis

Prevented the initialization of any non-stateful expression during set creation

This should actually kill a lot of underlying bugs

BONUS: Fix also stops a separate reference counting bug we had found

Fixed here

75 / 82

Patch

NFT_EXPR_STATEFUL flag is now checked prior to allocation

76 / 82

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/net/netfilter?id=520778042ccca019f3ffa136dd0ca565c486cedd


Patch

NFT_EXPR_STATEFUL flag is now checked prior to allocation

76 / 82

Conclusion

netlink and nf_tables is a fairly rich attacks surface

Same old tune:

msg_msg is popular for many exploits, but not explicitly required

Constructing bug-specific primitives is still very feasible!

Lots of new bugs/writeups/exploits in 2022

Unprivileged namespaces still seems very risky to have enabled

panic_on_oops=0 is dangerous

Userland FUSE server + setxattr() is very powerful

Writable modprobe_path remains a big weakness

77 / 82



Conclusion

netlink and nf_tables is a fairly rich attacks surface

Same old tune:

msg_msg is popular for many exploits, but not explicitly required

Constructing bug-specific primitives is still very feasible!

Lots of new bugs/writeups/exploits in 2022

Unprivileged namespaces still seems very risky to have enabled

panic_on_oops=0 is dangerous

Userland FUSE server + setxattr() is very powerful

Writable modprobe_path remains a big weakness

77 / 82

Mitigations / Prevention

How to avoid exploitation of these types of bugs?

Prevent ability to free misaligned slab cache addresses

More object-specific slab caches to reduce UAF replacement possibilities

CFI to avoid ROP gadget execution

panic_on_oops=1 to prevent unlink trick

Read-only modprobe_path via CONFIG_STATIC_USERMODEHELPER

Disable unprivileged namespaces

Disable userland FUSE server support

grsecurity's autoslab

Google's experimental mitigations

No idea when it's available for x64?

Fairly inconvenient in the real world

78 / 82

https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://github.com/thejh/linux/blob/slub-virtual/MITIGATION_README


Mitigations / Prevention

How to avoid exploitation of these types of bugs?

Prevent ability to free misaligned slab cache addresses

More object-specific slab caches to reduce UAF replacement possibilities

CFI to avoid ROP gadget execution

panic_on_oops=1 to prevent unlink trick

Read-only modprobe_path via CONFIG_STATIC_USERMODEHELPER

Disable unprivileged namespaces

Disable userland FUSE server support

grsecurity's autoslab

Google's experimental mitigations

No idea when it's available for x64?

Fairly inconvenient in the real world

78 / 82

Contact

Accompanying blog will be released shortly with a lot more details

EDG team group effort

We are hiring!

Aaron Adams: @fidgetingbits

Cedric Halbronn: @saidelike

Alex Plaskett: @alexjplaskett

79 / 82

https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://github.com/thejh/linux/blob/slub-virtual/MITIGATION_README
https://nccgroup.wd3.myworkdayjobs.com/en-US/NCC_Group/details/Exploit-Developer_R6065


Contact

Accompanying blog will be released shortly with a lot more details

EDG team group effort

We are hiring!

Aaron Adams: @fidgetingbits

Cedric Halbronn: @saidelike

Alex Plaskett: @alexjplaskett

79 / 82

Talon Voice Coding

I have bad RSI for a really long time

For the last ~2 years I've used voice coding and eye tracking for my 99% of work/research

Shout out to @lunixbochs's voice coding framework Talon

Take care of your hands/body everyone!

80 / 82

https://nccgroup.wd3.myworkdayjobs.com/en-US/NCC_Group/details/Exploit-Developer_R6065
https://talonvoice.com/


Talon Voice Coding

I have bad RSI for a really long time

For the last ~2 years I've used voice coding and eye tracking for my 99% of work/research

Shout out to @lunixbochs's voice coding framework Talon

Take care of your hands/body everyone!

80 / 82

Questions?

https://talonvoice.com/

