
Can a Fuzzer Match a Human? Solidity Case Study

Can a Fuzzer Match a Human?
Solidity Case Study

Bhargava Shastry
Ethereum Foundation

@ibags

bshastry

Can a Fuzzer Match a Human? Solidity Case Study

Fuzzer No Match for Human Tester, but…
● It can find security-critical bugs that a tester may

have missed
○ Often elicits: “Oh, I hadn’t considered that!”

● Throw the kitchen sink at something
● Really useful for differential (A/B) testing

2

Can a Fuzzer Match a Human? Solidity Case Study

tl;dr:
● Threat model: Incorrect code generation
● Randomly generated valid Solidity programs test

compiler
● Found 22 bugs using semantic fuzzing
● Continuous fuzzing for early bug discovery
● Virtually no Yul optimizer bugs post release in two years

3

Can a Fuzzer Match a Human? Solidity Case Study

whoami
● Security engineer, Solidity team
● Semantic testing of Solidity compiler

Find security-critical bugs in the compiler before it is
shipped

4

Can a Fuzzer Match a Human? Solidity Case Study

Introduction

5

Can a Fuzzer Match a Human? Solidity Case Study

Compiler Overview
6

Parser
Code

generator
Optimizer Assembler

Solidity program
EVM bytecode

Can a Fuzzer Match a Human? Solidity Case Study

Code generators
7

Parser

Sol->EVMB
Bytecode
Optimizer

Legacy code generator

Sol->Yul
Yul

Optimizer
Assembler

IR-based code generator *

* IR-based code generator also makes use of bytecode optimizer

Can a Fuzzer Match a Human? Solidity Case Study

Threat model
● Compiler user (programmer) is not malicious
● Bugs introduced by the compiler itself

○ Optimizer(s)
○ Code generator(s)
○ Assembler

● Parser bugs are out of scope

8

Can a Fuzzer Match a Human? Solidity Case Study

Fuzz testing in a nutshell
while not ctrl + c

do

 input=gen_input()

 runProgram(input)

done

9

Can a Fuzzer Match a Human? Solidity Case Study

Limitation of random fuzzing

contract C {
 function foo()
public {

do_something();
 }
}

contract C {
 fu#!3ion foo()
puX^&c {

do_something();
 }
}

Accepted by parser Rejected by parser

Mutation

10

Can a Fuzzer Match a Human? Solidity Case Study

Fuzzing a compiler requires
generating valid programs...

… generating a valid program requires
structure awareness

11

Can a Fuzzer Match a Human? Solidity Case Study

Approach

12

Can a Fuzzer Match a Human? Solidity Case Study

Input Generation
● Input generation approached in two different ways

○ Grammar-based Solidity program generator written in
C++ only

○ Protobuf based Yul program generator written using
protobuf C++ binding

13

Can a Fuzzer Match a Human? Solidity Case Study

Differential Testing
● Always compare two entities in order to find bug in

one of them
○ Optimized and unoptimised
○ Legacy and IR based code generators

● Execution Tracing approached in two different ways
○ EVM client based
○ Yul interpreter based

14

Can a Fuzzer Match a Human? Solidity Case Study

Grammar based Input Generation
● A full-fledged Solidity program generator written in

C++
● Each fuzzer mutation is a randomly-generator

program
● All programs are semantically valid

15

Can a Fuzzer Match a Human? Solidity Case Study

Yul Input Generation
Specification written in protobuf language

message Block {
 repeated Statement stmts;
}
...
message program {
 repeated Block blocks;
}

Full spec:
https://github.com/ethereum/solidity/blob/develop/test/tools/ossfuzz/yulProto.proto

16

https://github.com/ethereum/solidity/blob/develop/test/tools/ossfuzz/yulProto.proto

Can a Fuzzer Match a Human? Solidity Case Study

Input generation
● Input generated and mutated by libprotobuf-mutator
● Each input is a tree

blocks { stmts { ifstmt { condition {

binaryOp { eq { op1: varref{id: 0} op2: 0}

} } } } }

17

Can a Fuzzer Match a Human? Solidity Case Study

Input conversion
● Converter is source-to-source translator
● Input: protobuf serialization format
● Output: yul program

18

Can a Fuzzer Match a Human? Solidity Case Study

Example
blocks { stmts { ifstmt { condition {

binaryOp { eq { op1: varref{id: 0} op2: 0}

} } } } }

if x_0 == 0

Conversion

19

Can a Fuzzer Match a Human? Solidity Case Study

Test program generation

Protobuf
Converter

Libprotobuf
+

mutator

{
 function f()
 {
 ...
 }
}

Message func {
 Block b = 1;
}

Protobuf
specification

Test program

20

Can a Fuzzer Match a Human? Solidity Case Study

Correctness testing requires encoding
expectation somehow

21

Can a Fuzzer Match a Human? Solidity Case Study

Differential testing
● Track side-effects of execution
● Run baseline and experiment programs
● Compare side-effects

22

Can a Fuzzer Match a Human? Solidity Case Study

Execution Tracing
● Solidity programs drive EVM client (Evmone)
● Yul programs drive the Yul interpreter

23

Can a Fuzzer Match a Human? Solidity Case Study

Execution Tracing Overview

Execution
Tracer

MLOAD
MSTORE
…
DATACOPY

{
 function f()
 {
 ...
 }
}

Test program Execution
trace

24

Can a Fuzzer Match a Human? Solidity Case Study

Fuzzing Setup

Program
generator Execution

Tracer

Baseline MLOAD
MSTORE
…
DATACOPY

MLOAD
MSTORE
…
DATACOPY

==

Trace

25

Experiment

Component
under test

Can a Fuzzer Match a Human? Solidity Case Study

Results

26

Can a Fuzzer Match a Human? Solidity Case Study

Bug 1: Incorrect keccak computation
27

contract C {
 function f() public returns (bool ret) {
 assembly {
 mstore(0, 0)
 let a := keccak256(0, 32)
 let b := keccak256(0, 23)
 ret := eq(a, b)
 }
 }
}

Compute keccak hash
over memory contents
addressed by [0, 31]

Compute keccak hash
over memory contents
addressed by [0, 23]

Are they equal?

Can a Fuzzer Match a Human? Solidity Case Study

Bug 1: Incorrect keccak computation
28

contract C {
 function f() public returns (bool ret) {
 assembly {
 mstore(0, 0)
 let a := keccak256(0, 32)
 let b := keccak256(0, 23)
 ret := eq(a, b)
 }
 }
}

Compute keccak hash
over memory contents
addressed by [0, 31]

Compute keccak hash
over memory contents
addressed by [0, 23]

Function returns true!

Can a Fuzzer Match a Human? Solidity Case Study

Bug 1: Root cause
● Compiler assumes keccak256 is computed over

memory regions that are multiples of 32 bytes in size
● Caches based on start pointer
● Bug fix: Cache only if start pointer and length match

29

Can a Fuzzer Match a Human? Solidity Case Study

Bug 2: Incorrect Optimization
30

{
 function readValue() -> x {
 x := sload(0)
 }
 function writeValue() -> y {
 sstore(0, 2)
 y := sload(0)
 }
 function bug() -> z {
 z := mul(writeValue(), shl(readValue(), 1))
 }
}

Return value at storage zero

Write two to storage zero and
return two

??

Left-to-right evaluation

Can a Fuzzer Match a Human? Solidity Case Study

Correct Computation
31

 function bug() -> z {
 z := mul(writeValue(), shl(readValue(), 1))
 }

 z := mul(2, shl(2, 1))

 z := mul(2, 4):= 8

Can a Fuzzer Match a Human? Solidity Case Study

Optimizing Multiply by Two’s Power
X * 2^Y = X << Y

● 2^1 equivalent to left-shift by one
● Saves gas by eliminating multiplication

32

Can a Fuzzer Match a Human? Solidity Case Study

Incorrect Optimization
33

 function bug() -> z {
 z := shl(readValue(), writeValue())
 }

 z := shl(0, 2)

 z := 2

Arguments
re-ordered

Can a Fuzzer Match a Human? Solidity Case Study

Bug Fix: Incorrect optimization
● Add safety check
● Optimization that impacts order of evaluation

○ Can only be applied if no side-effects
● The buggy test case would be unoptimized

○ But that’s a lot better than introducing a bug!

34

Can a Fuzzer Match a Human? Solidity Case Study

Summary

35

Can a Fuzzer Match a Human? Solidity Case Study

Bugs by component

10

4

36

3

5

Can a Fuzzer Match a Human? Solidity Case Study

Bugs by impact

3

12

37

7

Can a Fuzzer Match a Human? Solidity Case Study

Bugs by severity

1
2

18

1

38

Can a Fuzzer Match a Human? Solidity Case Study

Summary
● Three bugs found before PR merged!
● Fuzzing helped safely transition Yul optimizer from

experimental to production
○ 15 bugs found before production release

● Zero bug collision with external users
○ Not present in real-world contracts?

39

Can a Fuzzer Match a Human? Solidity Case Study

Current Work

40

Can a Fuzzer Match a Human? Solidity Case Study

Two Bugs Required Human Assistance
● `returndatacopy(0, 1, 100)` inside a fallback function

○ HT @_hrkrshnn
● Storage corruption and empty push on bytes array

○ HT @ekpyron

 Can Fuzzer Approach Humanness?

41

Can a Fuzzer Match a Human? Solidity Case Study

Heuristics + Randomness
● Pure randomness may be ill-suited sometimes
● Redundant memory store eliminator

○ Requires read location to be equal or not-equal to
write location

○ Pure randomness will most likely not-equal than equal
○ Heuristic: Read from location that is already written to

occasionally

42

Can a Fuzzer Match a Human? Solidity Case Study

Conclusion

43

Can a Fuzzer Match a Human? Solidity Case Study

Conclusion
● Continuous grammar-aware fuzzing for early bug

discovery
● Useful for testing security-critical components of the

Solidity Compiler
● Decent assurance

○ Evidence that it works
○ No formal guarantees though

44

Can a Fuzzer Match a Human? Solidity Case Study

Thank You!

45

ethereum/solidity.git

gitter.im/ethereum/solidity-dev

