
GETTING CLEAR TEXT
PASSWORDS FROM AN
IDP & MORE:
OUR RESEARCH
METHODOLOGY

Authomize Ltd. All rights reserved

Gal Diskin / CTO & Co-Founder, Authomize
@gal_diskin on Twitter
https://diskin.org (personal blog)

https://diskin.org/

Agenda

• Background

• #PassBleed, Orange book, TCB, Graphs & knowledge graphs (KGs)

• Research process that led to #PassBleed issues

• Bleeding passwords via SCIM

• Impersonating anyone in the hub

• Summary

• Write your own logic vuln detection suite in less than 20 lines of Python

• Stop the FUD - public reaction to #PassBleed

• What we’ve learned and where to go from here

Intro

• Recently my team found a set of security risks in the popular Okta platform

dubbed #PassBleed, which were not recognized as vulnerabilities

• The main #PassBleed issues allow less privileged attackers in Okta to gain access

to super admin privileges

• In this talk, I will walk you through the research process we went through

• I will touch on a systematic approach to discovering certain classes of logic bugs

Trusted Computing Base

Per the Orange Book:

The heart of a trusted computer system is the Trusted

Computing Base (TCB) which contains all of the elements

of the system responsible for supporting the security

policy and supporting the isolation of objects (code and

data) on which the protection is based. [………]

Thus, the TCB includes hardware, firmware, and software

critical to protection and must be designed and

implemented such that system elements

excluded from it need not be

trusted to maintain protection.

https://commons.wikimedia.org/wiki/File:Trusted_Computer_System_Evaluation_Criteria_CSC-STD-001-83.pdf

https://commons.wikimedia.org/wiki/File:Trusted_Computer_System_Evaluation_Criteria_CSC-STD-001-83.pdf

Graphs networks in security

• What are Knowledge Graphs (KGs)?

• KGs applications to cybersecurity

• Maltego – social and even attack

surface mapping

• “Attackers think in graphs”

• Bloodhound

• CIEM

• Attack simulation

• …

https://commons.wikimedia.org/wiki/File:Wikidata-knowledge-graph-madame-x-2019.png

Sample Knowledge Graph

https://commons.wikimedia.org/wiki/File:Wikidata-knowledge-graph-madame-x-2019.png

Graphs as maps of trust

• Knowledge Graphs can be used to

map trust to systematically find logic

vulns

• How?

• Nodes = assets, privileges, or actors

• Edges = trust relations

• Our “innovation” - mistrust edges

• Any cycle with a mistrust edge is a vuln

• Why?

• Collaboration in teams

• Knowledge preservation

• Visualization for manual work &

prioritization

• Automation – faster and prevents human

error

Super Admin

Privileges
Super Admins

Usable by

Super Admin

Privileges
Super Admins

Usable by

Successful login

Password

verification
MFA

Depends

on

Before we continue – a short explanation

Access to something is the opposite direction of trust, because the

“accessed” entity must trust the “accessing” entity

9

ACCESS

TRUST

Bleeding passwords via SCIM

10

What is SCIM?

Image Source: Microsoft Documentation

• Identity provisioning protocol

• Automate sync of user and group data

• Okta extended it to support Password sync

Super Admin

Privileges
Super Admins

Usable by

Successful login

SCIM password

sync feature

SCIM Server

operators

Decryptable

password store

Trusts

Trusts

Trusts

Other SCIM

server owners

Valid Enterprise

applications

Enterprise application vendor

employees with relevant access

trusts

App Admins

Chosen By

Not Allowed

Chosen
By

Validation phase 1 – SCIM PrivEsc

13

“We made a mistake somewhere, there is no way an app admin can access all passwords

including super admin passwords. We’re missing something, let’s test again”

… [TESTING] → we got the cleartext password of super admin …

“Let’s check frequency at our customers”

“Some customers have 10s to 100s of app admins”

“Let’s try to understand why”

[Several days later] → Conclusion: this is the lowest built-in

role that can assign users the permission to use apps

“Ok, probably app admins are very highly privileged or rare”

Some technicalities – JSON payload

• Example JSON payload sent by Okta to (any)

SCIM server, taken from Okta documentation

• I like the self humor password ☺

14

PII

CLEAR TEXT PASSWORD

https://help.okta.com/en-us/Content/Topics/Provisioning/opp/OPP-provision-SCIM-messages.htm

https://help.okta.com/en-us/Content/Topics/Provisioning/opp/OPP-provision-SCIM-messages.htm

SCIM based attack scenarios to steal Passwords and PII

App Admin
insider

Bribed by
initial access
broker (IAB)

Exfiltrates
passwords

$$$1

Attacker
compromises one of
10s of App Admins

Exfiltrates super-
admin / automated
account password

Logs in using
password, may
need to beat

MFA

Privilege
Escalation
success!

2

Naïve App Admin
configures SCIM

to HTTP

Attacker sniffs
network traffic

Finds passwords
and PII

$$$3

Impersonating anyone in the hub

16

Hub & Spoke architecture explained

• Deployment model 1: Large

Organizations with Multiple

Business Units

• Each BU gets a spoke, all spokes

are connected as IdPs to the

main company acting as the hub

17

Source: Okta documentation

https://www.okta.com/resources/whitepaper/okta-for-global-distributed-organizations/

Hub & Spoke architecture explained

• Deployment model 2: Third-

Party (including contractor)

Outsourcing

• Each third-party provider gets a

spoke, all spokes are connected

as IdPs to the main company

which acts as a hub

• There are more deployment

scenarios such as M&A, Geo

based, …

Source: Okta documentation

https://www.okta.com/resources/whitepaper/okta-for-global-distributed-organizations/

Hub (main

company) Super

Admin Privileges

Hub Super

Admins

Usable by

Successful login

Any Spoke

Any IdP

Could

be

Trusts

Spoke Org/Super

Admins

Spoke App/Super

Admins

Not Allowed

External

company

employees

Org-Unit spoke

admins

Might be

Spoke

User Store

Controlled by

Org2org

username settings
Depends on Controlled by

Validation phase 2 – Hub & Spoke impersonation

[Several days later] → Conclusion: it’s the easiest way for Okta implement OU-like functionality

Okta has controls to prevent admin login (RegEx – which is bad) that don’t prevent downstream app

impersonation + ways to prevent downstream impersonation (undocumented & requires customer

architecture changes) 20

“There’s no way that the hub trusts the spoke implicitly”

“But this is what it means to be an IdP and it says so on the whitepaper page in Okta site”

“You’re saying that admins of org-units, acquired companies, and outsource companies

have hub admin access? No way - they must block duplicate usernames”

“Yes – see the documentation, it says duplicate name support is a feature and besides, it works”

-- Silence --

“Let’s try to understand why”

Hub & Spoke based attack scenarios to escalate privs

Small
acquired
company
added as

spoke

Admin in the
acquired

company spoke is
compromised

Spoke admin
used to

impersonate
super-admin

$$$1

A third-party
outsource company

is connected as
spoke

Admin in spoke
(non-employee)

impersonates CEO in
apps

Gains access to
confidential

data

Ransom
demand
arrives

2

Insider admin creates
an Okta developer

tenant

He connects or
modifies a spoke

to point to his
spoke

Continues to
maintain access

post “retirement”
$$$3

Conclusions, reactions and summary

22

Build your own graph analysis

Input data

import networkx as nx

G = nx.DiGraph()

G.add_node("Super Admin Privileges")

G.add_node("Super Admins")

G.add_edge("Super Admin Privileges", "Super Admins", type="Usable By")

G.add_node("Local Admins on Super Admin computers")

G.add_edge("Super Admins", "Local Admins on Super Admin computers", type="Trusts")

G.add_edge("Local Admins on Super Admin computers", "Super Admin Privileges",

type="Not Allowed")

23

Build your own graph analysis

Find suspicious cycles

nx.find_cycle(G, source="Super Admin Privileges")

nx.find_cycle(G)

Visualize quickly (many better packages out there)

import matplotlib.pyplot as plt

nx.draw_networkx(G, pos=nx.circular_layout(G), node_color='r', edge_color='b')

nx.draw_networkx_edge_labels(G, pos=nx.circular_layout(G),

edge_labels=nx.get_edge_attributes(G, "type"))

plt.show()

Don’t forget to save your graphs …

24

Public reaction

• Lots of FUD regarding this research

• Questions to ask

• If app admins can get super admin password – why bother having a different role?

• If one factor is enough, why configure MFA?

• If the master password should be shared, why is no one else in the same field doing this?

(password managers or SSO vendors supporting password based SSO)

• If Spokes represent a lower security domain (OU, third party, M&A), why is the default config

allowing them to impersonate anyone in the higher domain – the Hub (and this is advertised as a

feature)?

• How losers try to capitalize on such opportunities 💩

25

Disclosure

• We have worked closely with Okta’s security team disclosing these issues

• On one hand, those are considered as non-vulnerabilities – part of the system

specification

• On the other hand, there is an intent to add controls around these areas and the

separation between roles is broken

• More coming soon…

26

Summary

• KGs are a very useful tool to collect knowledge for attack and defense

• You can apply KGs to do trust analysis at scale and systematically find logic bugs,

it is simple to code that

• The implications of #PassBleed issues are:

• App Admins can get anyone's, including Super Admin, passwords

• Spoke (OU, M&A, third party) admins can impersonate anyone in the hub, or

downstream apps, in the default config

• Don’t believe the FUD ☺

27

Questions?

Learn more:
• Find me on twitter: @gal_diskin
• See our YouTube Demos explaining and demonstrating #PassBleed risks step by step or

read the blogs on authomize.com/blog

https://twitter.com/gal_diskin
https://www.youtube.com/channel/UC5_CchB2Unugm4knRbLnTUg

