

HTTPS://CONFERENCE.HITB.ORG/HITBSECCONF2024BKK

A Design and Development of a Multi-Tenant SIEM: A Prototype Case Study using Security Onion

Wararit Hongkamnerd

Student, Kasetsart University

HITB-TBCERT CommSec Track

29 AUG

Overview

KU

- Introduction
- Problems
- Methodology
- Results
- Key Takeaways

Introduction

Ö

 \mathbf{A}

Multi-tenancy

- Single instance of software serving multiple customers
- Shared infrastructure with isolated data and resources for each customer
- Enhanced scalability and cost-efficiency compared to dedicated instances
- Data privacy and security are critical considerations

Single Tenant vs. Multitenant

Multitenancy for MSSPs

Same software instance for many different organizations

https://www.logpoint.com/wp-content/uploads/2020/10/single-tenant-vs.-multitenantinfographic.png

Security Onion

• **Open-source SIEM platform** for comprehensive log management and correlation

• Built on a foundation of free and open-source tools, integrated with built-in tools

Security Onion

- Deployment models:
 - Standalone 0
 - Distributed 0
 - 0 etc.

KU

https://docs.securityonion.net/en/2.4/architecture.html

//////

Security Onion

- Deployment models:
 - o Standalone
 - o Distributed
 - o etc.

KU

https://docs.securityonion.net/en/2.4/architecture.html

//////

MSSP

- Stands for Managed Security Service Provider
- External organization that provides security services for clients
- An important tool is SIEM

Problems

Ċ

人

SIEM for MSSP

- **Multi-tenant architecture** is crucial for MSSPs to efficiently manage multiple clients' security data in isolation
- Open-source SIEMs often lack built-in multi-tenant capabilities

Time to recover SIEM

- **SIEM** is a critical tool for maintaining overall security
- Downtime of a SIEM system can significantly impact an organization's security posture
- Rapid recovery is essential to minimize risk exposure

Methodology

Solutions

- Propose a new Security Onion architecture to support multi-tenant functionality
- Develop a separate system to manage user permissions among tenants
- Identify key factors that impact recovery time

Solution 1: A new architecture

- Propose a new architecture to support multi-tenant functionality
- Prioritize minimal modifications to the default architecture

Authentication & Authorization components

- Web-based monitoring page called SOC
- Kratos as an authenticator
- Access through Nginx proxy

KU

ANRES

Authentication & Authorization process

1. User sends a request to the SOC inside Security

Onion

 $\wedge NRE$

- Nginx proxy creates sub-request and send to the authenticator to validate user's session
- **3. Kratos** authenticator validates the session and returns session info
- Proxy sends original request with session info for the SOC to authorize the user

Multi-tenant architecture ?

- Each client has separated Security Onion instance
- Reduce risk of data leakage

KU

ANRES

Problems

KU

- Each tenant has its own authentication
- Distinct session token
- Users like admins need to login for each tenant

To solve the problems

- Centralized Authentication: Use a single login system
- Shared Database: Store user data in one place
- **Proxy Configuration:** Adjust proxies to use the shared authenticator

• Shared Tokens: Allow users to stay logged in across different tenants

KU

 $\land N R E$

Solutions

- Propose a new Security Onion architecture to support multi-tenant functionality
- Develop a separate system to manage user permissions among tenants
- Identify key factors that impact recovery time

Solution 2: Dedicated SIEM management

- While high isolation levels are crucial for security, they can increase management complexity
- A dedicated management system can simplify user authorization and access control across multiple tenants

KU 🔬

Default permission management process

- Authorization process: SOC authorizes users based on
 - O User ID

 $\wedge NRE$

- O User's role
- User Lookup: Queries user ID using the session token
- Permission Modification: Edits the userpermission file in Security Onion for the specified ID

Configure Configure Configure enant-2 User ermissio permission Verify soc SOC monitoring monitorina nonitorin Security Security Security Onion Onion Onion

Super-admin

Note: so-allow command will manage the above steps

Default permission management process

- Authorization process: SOC authorizes users based on
 - O User ID
 - O User's role
- User Lookup: Queries user ID using the session token
- **Permission Modification:** Edits the userpermission file in Security Onion for the specified ID

Note: so-allow command will manage the above steps

Custom permission management process

- For centralized permission management
- Centralized Control: Admins manage user permissions from a dedicated management system (Portal)
- Permission Deployment: The portal deploys permission changes to Security Onion

Solutions

- Propose a new Security Onion architecture to support multi-tenant functionality
- Develop a separate system to manage user permissions among tenants
- Identify key factors that impact recovery time

Solution 3: Key factors impact recovery time

- Critical for minimizing downtime and maintaining security
- Enhances operational efficiency and overall security posture

Recovery process

Recovery approach depends on issue severity

- Restart services
- \circ Reboot
- \circ Restore from backup

• Reboot

KU

<u>ANRES</u>

 $T_{recovery} = T_{shutdown} + T_{startup} + T_{services}$

• Restore from backup

Scenarios

CPU Budget variation

- To investigate impact of CPU contention
- CPU time is restricted within a period
- In units of percentage
- More CPU budget = Less CPU contention

I/O Bandwidth variation

Scenarios

CPU Budget variation

- To investigate impact of CPU contention
- CPU time is restricted within a period
- In units of percentage
- More CPU budget = Less CPU contention

I/O Bandwidth variation

- To investigate impact of I/O contention
- I/O throughput is restricted
- In units of IOPS

 More I/O bandwidth = Less I/O contention

Published paper

- Title: Effects of SIEM Recovery Time: Case Study on Security Onion
- Published in: 2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)

- Date of Conference: 27-30 May 2024
- DOI: 10.1109/ECTI-CON60892.2024.10594988

Influence of CPU Contention on Security Onion Startup Time

- Security Onion startup time for manager and search nodes under varying CPU budgets
- Exponential decay pattern for both nodes

KU

 $\wedge N R E$

HITB2024BKK

Influence of CPU Contention on OS Startup Time

- OS startup time for manager and search nodes under varying **CPU budgets**
- Exponential decay pattern for both nodes

KU

 $\wedge N R E$

Influence of I/O Contention on Security Onion Startup Time

- Security Onion startup time for manager and search nodes under varying I/O bandwidth
- Linear for search node

KU

ANRES

Saturation point

KU

ANRES

 Values that exceed the saturation point will no longer significantly affect to startup time

Influence of I/O Contention on Security Onion Startup Time

- Additional experiment for search node under varying lower I/O bandwidth
- Decreasing for both node

KU

ANRE

Influence of I/O Contention on OS Startup Time

• OS startup time for manager and search nodes under varying I/O bandwidth

KU

 $\land N R E$

• Exponential decay pattern for manager and search nodes

Summary

- Increased CPU and I/O contentions correlate with increased startup time
- Saturation points indicate threshold levels of resource requirements
- OS startup time consistent for both node types
- Security Onion startup time longer for manager nodes due to more complex service initiation
- Search nodes' I/O resource requirements lower than manager nodes

Key Takeaways

Multi-tenant Open-source SIEM

- Challenge: Open-source SIEMs often lack native multi-tenant capabilities
- Solution: Implemented a multi-tenant architecture with Security Onion
- Key Features:
 - Centralized authentication for shared sessions
 - o Centralized permission management for simplified administration

Strategies for Enhancing Security Onion Recovery Time

- Allocate sufficient CPU and I/O resources, especially to manager nodes
- Consider CPU pinning to improve core utilization and reduce contention
- Utilize SSDs for faster I/O operations and quicker VM startup

Thank you!

Ċ

人