
My first 
and Last 
Shellcode Loader

Dobin Rutishauser

Red Team Lead, Raiffeisen Schweiz

Commsec Track 29 AUG

Slides: https://bit.ly/4dGhBXl



2
Loader

Developer // TerreActive

Pentester  // Compass Security

Developer  // UZH

SOC Analyst // Infoguard

RedTeam Lead // Raiffeisen

SSL/TLS Recommendations
// OWASP Switzerland

Burp Sentinel - Semi Automated Web Scanner
// BSides Vienna

Automated WAF Testing and XSS Detection
// OWASP Switzerland Barcamp

Fuzzing For Worms - AFL For Network Servers
// Area 41

Develop your own RAT - EDR & AV Defense
// Area 41

Avred - Analyzing and Reverse Engineering AV 
Signatures
// HITB

About Me

Memory Corruption Exploits & Mitigations
// BFH - Bern University of Applied Sciences

Gaining Access
// OST - Eastern Switzerland University of Applied Sciences



3
Loader

How loader works

Payload detection & bypass

Make Shellcode & EXE Injection

Antivirus, 10min

Intro to Loader, 5min

EDR, 20min

Supermega & Cordyceps, 20min

01

02

03

04

Content

Analysis & ConclusionAnti-EDR, 5min+ 05

EDR Input & Attacks



Intro



Loader Intro

Target Audience
● RedTeamers
● Doing initial access with their C2 (CobaltStrike, Sliver, Havoc…)
● Have some EDR knowhow, but confused

Me:
● Not much interest in specific (detectable) anti-EDR techniques
● Interest in how stuff overall works

Create C2
Implant ???Send .exe

to victim
Pack in

.exe Profit



Loader Motivation: Initial Access with C2



Loader Motivation: Initial Access with C2

https://github.com/sevagas/Advanced_Initial_access_in_2024_OffensiveX/blob/main/breach_the_gates_extended.pdf

https://github.com/sevagas/Advanced_Initial_access_in_2024_OffensiveX/blob/main/breach_the_gates_extended.pdf


Loader Why

“EDR bypass this”
“EDR bypass that”
“New EDR bypass technique”
“How i bypassed EDR”
“Usermode unhooking to bypass EDR”

● People dont understand EDR
● People dont know what they are bypassing
● People develop super advanced low level Anti-EDR 

techniques which create more telemetry than they solve



Processes



Loader Program vs. Process

Code

Header

Data

Program.exe Process

Windows Loader

Code

Data

Harddisk RAM



Loader File vs. Process Analysis

Code

Header

Data

Program.exe Process

Code

Data

Antivirus
Signatures

Yara
File Hash

Imports
Disassembler

Decompiler

Memory scanning
Sandbox
EDR
Debugger

Static Analysis Dynamic Analysis
Behaviour Analysis



Loader Memory Region Permissions

Code

Header

Data

Program.exe Process

Code

Data

Read, Execute

Read, Write



Loader Memory Region Backed vs. Unbacked

Code

Header

Data

Program.exe Process

Code

Data

Backed

Backed

VirtualAlloc’d Unbacked



Loader



Loader Process Memory Regions



Shellcode Loader Example



Loader Shellcode: Calc



Loader Shellcode: Calc



Loader Shellcode: Loader

Need: 
● Shellcode (payload)
● VirtualAlloc memory
● Copy shellcode to memory
● Exec memory



Loader Shellcode Loader: 1/3 VirtualAlloc

Code

Data

RWX Region

VirtualAlloc(RWX)
Create new region in process

Payload



Loader Shellcode Loader: 2/3 Copy

Code

Data

RWX Region

Copy Payload to RWX Region
Payload



Loader Shellcode Loader: 3/3 Exec

Code

Data

RWX Region

execute payload 
(shellcode / memory region)Payload



Loader Shellcode Loader Structure

● The payload / shellcode to execute
○ In .data, .rdata, .text, from a file
○ Encoded, encrypted, base64, xor’d…

● The writeable/executable memory
○ VirtualAlloc()
○ NtAllocateVirtualMemory()
○ HeapAlloc()

● The copy
○ for() loop
○ memcpy() / memmove()
○ RtlCopyMemory(), CopyMemory(), 

MoveMemory()
● The execution

○ Just jmp to it: ((void(*)())exec)();
○ CreateThread(), QueueUserWorkItem()
○ QueueUserApc()
○ Windows functions which use a callback

● Shellcode can be a reflective DLL

Alloc 
RWX

Decode
Copy

RWX

Shellcode

Exec



Shellcode Loader
In other languages



Loader Shellcode Loader: .NET / C#



Loader Shellcode Loader: Powershell



Loader Shellcode Loader: VBA



Loader Shellcode Loader: Remote Process Injection

Code

Data

RWX

Teams.exe
Process

Code

Data

Shellcode

Loader.exe
Process

OpenProcess()

VirtualAllocEx()
WriteProcessMemory()

Shellcode



Loader Shellcode Loader: Remote Process Injection



Anti Virus Detection



Loader Loader: Unencrypted Payload 

Alloc RWX

Copy

RWX

Payload

Exec



Loader Loader: Unencrypted Payload

Code

Data

Payload
Scan File
Signature Scan

loader.exe

AV

Write-File Event

OS



Loader DEMO 1

DEMO: Show AV finds unencrypted metasploit



AntiVirus - Encrypted Payload



Loader Loader: Unencrypted Payload 

Alloc RWX

Copy

RWX

Payload
Encrypted

Exec



Loader Loader: Encrypted payload

Code

Data

Payload
Encrypted

Signature Scan

“Encryption” can be anything
● XOR
● ROT13
● ADD 1
● ZIP
● Base64

Theres no need to: 
● AES, RC4 etc.
● Low entropy / steganography 
● Hide it / steganogrphy / low entropy 

(like SVG, CSS, UUID, CSV)



Loader DEMO 2

DEMO: Show AV with encrypted metasploit



AntiVirus
AV Emulator



Loader AV Emulator

AV Emulator:
● “Interpret” PE file
● Virtual CPU, Windows

It is not: 
● Virtualization
● Sandbox
● Full Emulation (Bochs)
● Wine



Loader AV Emulator

Emulate binary until condition is met
Signature Memory Scan after that

Cut-off condition:
● Time
● Number of instructions
● Number of API Calls
● Amount of memory used

Emulating
EXE

Cut-Off 
reached?

Memory Scan



Loader Anti AV Emulator

Process Anti
Emulation Payload

Alloc
Copy
Exec

AV Emulation

Payload
Encrypted



Loader Anti AV Emulator

Process Anti
Emulation Payload

Alloc
Copy
Exec

AV Emulation

Payload
Encrypted

Static Code Analysis



Loader DEMO 3

DEMO: AV does NOT find encrypted metasploit with Anti-Emulation

● Show Anti-Emulation



Detection in Middleboxes
Dynamic Analysis



Loader Middleboxes

Client

Email
Gateway

Web
Proxy

Teams
Sharepoint

Malware

AV

AV AV

AV

Sandbox



Loader Execution Guardrails

● AD Domain
● Username
● Installed Software
● IP Address

Execution guardrails: 

● Environment check
● Environmental keying
● Sandbox / VM detection

● Vmtools installed
● # CPUs, RAM
● Vmware Drivers



Loader Anti AV Emulator

Process Execution
Guardrails Payload

Alloc
Copy
Exec

Sandbox

Payload
Encrypted



Loader Design
Conclusion



Loader Loader Summary

Process Execution
Guardrails Payload

Alloc
Copy
Exec

Middleboxes (off target)

Payload
Encrypted

Anti
Emulation

AV Emulator

Static Analysis



Loader Loader Problem

Process Execution
Guardrails Payload

Alloc
Copy
Exec

Payload
Encrypted

Anti
Emulation

EDRTelemetry
Memory Scan



EDR Fundamentals



Loader EDR

EDR:
● Agent on each System
● Find malicious processes



Loader EDR

EDR is blackbox
Many different EDR
Rapid development

Therefore: 
● Focus on what the EDR sees
● Not the detections itself
● Whats the input?
● Create a framework to reason 

about EDR

EDR

Blackbox

Input Alerts



Loader

 File  
Scan

AV

Mem 
Scan
EDR

Behaviour
Telemetry

EDR

Signatures

EDR - Bubbles of Bane



EDR Input: Usermode-Hooks



Loader

NtApi

Usermode Hooks

kernel32.dll
OpenProcess

Ntdll.dll
NtOpenProcess

Kernel
NtOpenProcess

syscall

kernel32.dll
VirtualAllocEx

Ntdll.dll
NtAllocateVirtualMemory

Kernel
NtAllocateVirtualMemory

syscall

WinApi

Usermode 
Hook

Usermode 
Hook Kernel



Loader

EDR

Usermode Hooks

Process

Ntdll.dll
Hooked Windows

Kernel

Syscall

Usermode Hooks

Hook
DLL



Loader Usermode Hooks: Patching ntdll.dll

App.exe Kernel32.dll::
OpenProcess()

Ntdll.dll::
NtOpenProcess()

OS
Kernel

jmp callback

syscall

Amsi.dll
NtCreateFileTrampoline()

syscall

EDR

notify



Loader Usermode Hooks

Typically hooked functions:
● VirtualAlloc, VirtualProtect
● MapViewOfFile, MapViewOfFile2
● VirtualAllocEx, VirtualProtectEx
● QueueUserAPC
● SetThreadContext
● WriteProcessMemory, 

ReadProcessMemory



EDR Input List



Loader

OS

EDR Inputs

Process

ntdll.dll

amsi.dll

EtwWrite()

syscall

pipe

Kernel Callbacks

ETW

ETW-TI
EDR

Usermode Hooks



EDR Input
Kernel Callbacks



Loader Kernel Callbacks

void CreateProcessNotifyRoutine(parent_process, pid, createInfo)
void CreateThreadNotifyRoutine(ProcessId, ThreadId, Create);
void LoadImageNotifyRoutine(FullImageName, ProcessId, ImageInfo);
void ObCallback(RegistrationContext, PreInfo);



Loader Kernel Callbacks



EDR Input
ETW



Loader ETW



Loader ETW Providers



Loader ETW Providers, Loader relevant

ETW Provider Info

Microsoft-Windows-Kernel-Process ● Process Start/Stop
● Thread Start/Stop
● Image Loads

Microsoft-Windows-Security-Auditing ● Process Start/Stop
● Security Operations

Microsoft-Antimalware-* ● Defender Internals

<tbd>



Loader ETW Provider: Microsoft-Windows-Kernel-Process

Microsoft-Windows-Kernel-Process: Provides events related to process creation and termination. It can help 
detect suspicious processes being spawned.

● Process Start/Stop
● Thread Start/Stop
● Image Load/Unload
● Some more

ProcessStart data:
● ProcessID
● CreateTime
● ParentProcessID
● ImageName

Basically same as Kernel Callbacks



Loader ETW Provider: Microsoft-Windows-Security-Auditing



Loader

OS

Two Sides of ETW

Process (Etw)EventWrite()

ETW

EDR

ETW

ETW



EDR Input
ETW-TI



Loader ETW-TI

ETW-Threat Intelligence
The good shit

Few consumers (Defender?)
Req PPL’d and signed process



EDR Input
Query Process



Loader Query Process Information

Most events only have very little information
● PID
● ThreadID
● What happened (Image allocation at address x)



Loader

OS

EDR: Query Overview

Process

ntdll.dll

amsi.dll

EtwWrite()

syscall

Kernel Callbacks

ETW

ETW-TI

AMSI

PEB
EPROCESS

File

Process Info

Memory Scan

File Scan

Process

Callstack

EDR



Loader EDR: Query Process Information

Query Process Information:
● Parent Process Id
● Image filename (source exe)
● Command line parameters
● Loaded DLL’s

Note: 
● PPID Spoofing
● Command line argument Spoofing

NtQueryInformationProcess()

Process

PEB EPROCESS



Loader EDR: Memory Scanning

Signature scan (like in files)
Performance intensive - only on trigger

Process

Code

Data



Loader EDR: Callstack Analysis

Callstack: 
● On NtApi Call (AMSI or syscall)
● List of addresses of all previous parent functions



Loader EDR: Callstack Analysis

Process

ntdll.dll

amsi.dll

syscall

EDRAMSI

Process

Callstack

OS

Stack

.text



Loader Callstack analysis - Elastic

Elastic has callstack analysis rules for:
● Direct syscalls
● Callback-based evasion
● Module Stomping
● Library loading from unbacked 

region
● Process created from unbacked 

region

Callstack analysis for:
● VirtualAlloc, VirtualProtect
● MapViewOfFile, MapViewOfFile2
● VirtualAllocEx, VirtualProtectEx
● QueueUserAPC
● SetThreadContext
● WriteProcessMemory, 

ReadProcessMemory



EDR Performance



Loader EDR Performance

If EDR is slow dev’s go to Mac. Cant let this happen. 

Perf Impact What

1 Event

3 Events Correlation

10 Process Query

100 Memory Scan

1000 File Scan



Loader Time in Event Processing

EDR

Input Events

Query Process Info (QPI)

time



Loader Sysmon

Process Kernel Callbacks

ETW

Process Info

Memory Scan

● MD5 hashes of images
● Callstack (ProcessAccess)
● Current Working Directoy

OS

ETW

Sysmon



EDR Example Attacks



Usermode-hook patch



Loader

NtApi

Usermode Hooks

kernel32.dll
OpenProcess

Ntdll.dll
NtOpenProcess

Kernel
NtOpenProcess

syscall

kernel32.dll
VirtualAllocEx

Ntdll.dll
NtAllocateVirtualMemory

Kernel
NtAllocateVirtualMemory

syscall

WinApi

Usermode 
Hook



Loader Usermode-hook patch

Remove Userspace-Hooks by patching ntdll.dll

.text

ntdll.dll

EDR
sus?

VirtualProtect(ntdll.dll, RX->RW)
memcpy(ntdll.dll, …)
VirtualProtect(ntdll.dll, RW->RX)



“EDR bypass”



Loader Usermode Hooks: Patching ntdll.dll

App.exe Kernel32.dll::
OpenProcess()

Ntdll.dll::
NtOpenProcess()

OS
Kernel

jmp callback

syscall

Amsi.dll
NtCreateFileTrampoline()

syscall

EDR

Indirect Syscall

Direct Syscall syscall

:-(



Callstack Spoofing



Loader Callstack Spoofing

Callstack: 
● List of addresses of all previous parent functions



Loader Callstack Spoofing

Callstack patch: Modify process/thread stack return addresses



Loader Callstack Spoofing

EDR

Stack

Process

Query Callstack

.text
OS

NtApi

Unbacked 
shellcode

Patch
Stack



Image Spoofing



Loader Image Spoofing

.text

Start Suspended

Overwrite Memory

Resume Process

 notepad.exe

C2



Module Stomping



Loader Module Stomping

C2
openssl.dll

.text

LoadLibrary(“openssl.dll”)

Overwrite Memory

Start Thread

notepad.exe



Memory Encryption



Loader Memory Encryption

.text

.data

Active

.text 
encrypted

.data
encrypted

Sleep

EDR

Sleep()

Memory Scan



EDR Attacks Summary



Loader EDR Attacks Overview

Userspace-hook patch Modifying backed RX memory region

ETW patch Modifying backed RX memory region

Image Spoofing Modifying backed RX memory region

Module Stomping Modifying backed RX memory region

Memory Encryption Modifying unbacked RX memory region

Callstack spoofing Modify process/thread stack

Commandline spoofing Overwrite commandline in PEB

PPID spoofing PROCINFO on ProcessCreate(), in EPROCESS



SuperMega Loader 
Cordyceps Technique



Loader Loader injection

Payload
encoded

Carrier

Loader= Loader

Putty, 7zip, ...PIC, 
Shellcode

program.exe



Loader Code Similarity Scanning

Malware Detection: 
Code Similary Scanning

Compare code in EXE files with 
known bad
● Find new versions of malware
● Find code of existing malware in 

new files
● “Are QBot and PikaBot related?”
● “This looks like QBot”



Loader Machine Learning

Machine Learning
1) Train Neural Network on malware files
2) ???
3) Profit?

But, what is the similarity in the following 
malware?
● Mimikatz
● CobaltStrike
● Nmap
● Metasploit
● Qbot
● Rubeus
● Psexec



Loader Why file injection?

File injection:
● Harder to find the malicious code

○ Lots of “code”
○ Code similarity searches fail
○ No “Good code stuffing”

● Existing Meta information in the PE
○ Metadata like Company, Issuer
○ Imports / IAT

● Whats the alternative? 
○ Write your own loader which results in a 

5kb file?
○ EXES generated from C2 frameworks?
○ Burned Public loaders?

.text

7zip.exe

Loader
Shellcode



Loader Basic File Injection

EXE

Header

.text

EXE

Header

.text

Loader

EXE

Header

.text

Loader

EXE

Header

.text

Loader

Plain Overwrite main()
Middle of .text
Patch entry point

Middle of .text
Patch call

Mode = 1,1 Mode = 2,1



Loader RedBackdoorer

https://github.com/mgeeky/ProtectMyTooling/blob/master/RedBackdoorer.py



Loader Disassembled PE Entry Point (main)



SuperMega
Shellcode generation



Loader SuperMega: Shellcode Creation

C ShellcodeASM 
Text



Loader SuperMega: Shellcode Creation

char *dest = VirtualAlloc(
  NULL, 202844, 0x3000, RW);

for (int n=0; n<202844; n++) {
  dest[n] = supermega_payload[n];
}

if (MyVirtualProtect(
    dest, 202844, RX, &res) == 0) {
  return 7;
}

(*(void(*)())(dest))();



Loader SuperMega: Shellcode Creation

.c 

Template

.c 

Rendered

.asm

Compiled

.asm

Cleaned

.exe 

Compiled

.bin

Shellcode

jinja2 cl.exe masm_shc ml64.exe pefile



Loader Demo

Demo SuperMega UI
● C -> ASM
● Phases
● Options



Cordyceps



Loader Cordyceps Motivation

Improve “From C project, through 
assembly, to shellcode”
Goal: 
● Less signaturable
● Less obviously malware

Make it look as genuine as possible



Cordyceps
Original Loader PEB Walk



Loader PEB Walk

Calling functions in shellcode: 
● Locate the PEB
● Access Ldr data structure: PEB->Ldr

○ Traverse module list (find “ntdll.dll”)
■ Get export table of module
■ Resolve function address



Loader

NtApi

PEB Walk

kernel32.dll
VirtualAllocEx

Ntdll.dll
NtAllocateVirtualMemory

Kernel
NtAllocateVirtualMemory

syscall

WinApi

NOPEB Walk
Find this



Loader PEB Walk



Loader PEB Walk



Loader PEB Walk

● Why cant we call functions like the program itself?
○ Avoiding the PEB walk



IAT calls
The normal way



Loader IAT Call



Loader IAT Call

.text

IAT

User32.dll
MessageBoxW()

Call iat:
MessageBoxW

Call User32.dll: 
MessageBoxW()



Loader IAT Call

Call IAT:

IAT:



Loader IAT Call

0x140001017 + 0x1063 - 6 = 0x140002080

0x140002080

6 bytes



Cordyceps
IAT Reuse



Loader Cordyceps: IAT reuse

IAT reuse: 
● Goal: Get rid of PEB_WALK
● Solution: Relative call to IAT

Problem: 
● MASM doesnt support relative call’s
● Solution: Patch shellcode in the infected 

binary



Loader Cordyceps: IAT reuse



Loader Cordyceps: IAT reuse



Loader Cordyceps: IAT reuse



Loader Cordyceps: IAT reuse

ASM Text

ASM Text
With Placeholder

loader.exe

Shellcode
With Placeholder

inject

Replace
placeholder

Shellcode
With Placeholder

C Loader loader.exe

Shellcode
Fixed

IAT



Loader Cordyceps: IAT reuse

● Find RVA of placeholder (\xd8\x4a\xcc\x09\x26\x9e)
● Find RVA of IAT entry (GetEnvironmentVariableW())
● Create relative “call” instruction
● Replace placeholder with “call” instruction

Note: This is not IAT hooking, its normal IAT usage



Loader Cordyceps: IAT reuse

Replaced

RVA of call address + RVA IAT = call with offset



Loader Demo

Demo SuperMega UI
● Templates



Cordyceps
.rdata Reuse



Loader Problem: Shellcode Data Reference

Shellcode is code only
How to handle data? (function call arguments)



Loader Problem: Shellcode Data Reference

Instruct compiler to push data on stack



Loader Problem: Shellcode Data Reference

Or, alternatively: 
● Interleave data in code
● Jump over it



Loader Cordyceps: .rdata reuse

Both solutions look suspicious

Solution similar to IAT-reuse: 
● Inject data into .rdata section
● Patch shellcode in exe to reference it

○ Relative load

.rdata

.text

shellcode

refInject code

Inject data Shellcode data



Loader Cordyceps: .rdata reuse



Cordyceps Technique



Loader Cordyceps Technique

Cordyceps: 
Inject shellcode into executable .text

Patch injected shellcode: 
● IAT reuse
● .rdata reuse

Result: Cant differentiate from genuine program
● No IOC’s
● No shellcode detection possible

The restrictions of shellcode dont apply 
when EXE injections is performed

Like in “The last of us”



Loader Demo 4

Demo: Demo 3 Metasploit Meterpreter execution
● Defender: No detection
● MDE: Detection



Anti EDR



Loader Goal: Avoid Memory Scan Trigger

 File Scan
AV

Mem Scan
EDR

Behaviour
Telemetry

EDR

File Carrier / Loader
With Encrypted 
Payload

Unencrypted Payload



Loader EDR Design

● High performance required
● Little information available
● A lot of noise in the system

● Focus: Unbacked memory
○ Unbacked RWX memory
○ Threads starting in unbacked memory
○ Calls into kernel from unbacked 

memory
○ Unbacked RX memory (going RW)

● Backed = already AV Scanned

.code

VirtualAlloc

.code Backed

Unbacked



Loader EDR Deconditioning

What will trigger a Memory Scan?

1 VirtualAlloc RW

2 memcpy

3 VirtualProtect RX

4 CreateNewThread()

1 VirtualAlloc(RW)

2 memcpy

3 VirtualProtect RX

4 jmp



Cordyceps
EDR deconditioning



Loader EDR Deconditioning

Make EDR tired of scanning our memory
Copy carrier functionality

Sirallocalot:
● Do 10 times:

○ Do 100 times:
■ Alloc memory RW with shellcode_len
■ Copy fake data into memory
■ Change to RX
■ Leave it for a bit

○ Free 100



Loader EDR Deconditioning

Like pavlov’s dogs

Ring the bell a lot



Loader Demo 5

Demo with sirallocalot MDE



Conclusion



Loader Basic Assumption

● It seems there is not enough information to identify loader based on telemetry
○ Only Process / Thread / Image loads
○ Loader doesnt use networking, file or registry access

● Telemetry may be there for loader mischief
○ unbacked RW -> RX changes
○ Modifying backed regions

● But not used



Loader Self-Stomping

Loader is integrated in backed image section
● Makes it trustworthy

.text

SuperMega
Loader

Payload
Shellcode
Unbacked

C2 doing its thing



Loader Bubbles of Bane

Supermega: 
● No signature

○ Or easy changeable
● Very little telemetry

○ All look normal
○ From backed memory

● Will not trigger mem scan
○ But susceptible to 

on-demand mem scan 
○ pe-sieve, moneta

 File Scan
AV

Mem Scan
EDR

Behaviour
Telemetry

EDR



Loader Anti EDR Techniques used for SuperMega Loader

RedTeam Technique Applied? Aka

ETW patch? No ETW bypass

Usermode-hook patch? No AMSI patch, EDR Unhooking RefleXXion, ScareCrow

Module stomping? No DLL stomping

Image spoofing? No Process Hollowing

Memory encryption? No Sleepmask Ekko, Gargoyle, Foliage

direct/indirect syscalls? No EDR bypass SysWhisper 1/2/3

Callstack spoofing? No

Mess with other process? No Process injection

PPID or Argument spoofing? No



Loader EDR Checkboxes for SuperMega Loader

Carrier code signatured? No

Windows API Calls coming from unbacked memory? No

Windows API Calls have a suspicious callstack? No

Change memory region from RX to RW? No

Hardware / Software breakpoints? No

APC calls? No

Unbacked RWX memory? No

Unbacked RX memory? Yes

Suspicious sleep state? No

Reflective DLL used? No



Loader Things to avoid in payload

Payload should not do fancy memory things
● No Stagers
● No Reflective DLL Staged: 

windows/meterpreter/reverse_tcp

Stageless:
windows/meterpreter_reverse_tcp



Loader Loader vs. Payload

Loader Payload

Loader loads the payload
● CobaltStrike, Sliver, Brute ratel, havoc…
● Give the payload best possible changes

C2 should protect itself
● Leave it to the experts

○ Memory encryption
○ Callstacks



Loader

OS

EDR: Query Overview

Process

ntdll.dll

amsi.dll

EtwWrite()

syscall

pipe

Kernel Callbacks

ETW

ETW-TI

EDR

AMSI

PEB
EPROCESS

File

Process Info

Memory Scan

File Scan

Process

Callstack



Loader Loader Design

EXE
Loader

Execution
Guardrails Payload

Alloc
Decode

Exec

Anti
Emulation

Payload
Encrypted

EDR 
Deconditioning

When doing your own loader:

● EDR bypass really necessary? (usermode hook patching)
● Strong encryption / entropy really important?
● Focus on:

○ Backed memory
○ No RWX
○ No RX -> RW
○ Clean Callstacks

● Careful with process injection

Alternatives: 
● DLL Sideloading



Loader Correct Anti-EDR

SuperMega & Cordyceps
With Anti-Emulator, and sirallocalot EDR deconditioner

Is able to load: 
Nonstaged Winhttp Metasploit with disabled stdapi, and CobaltStrike 4.9 default 
config
● On Win10/Win11 Defender with no alerts
● On Win11 MDE with low-rated alerts

As of August 2024



Loader Outlook

● Execution Guardrails are very powerful
○ Do them early

● Injecting shellcode into .exe’s is… nice
○ Looks genuine. Can thwart automated analysis
○ Makes manual analysis maybe a bit harder
○ Different than creating your own malicious exe’s
○ Different than shellcode inject through some other means

● Injecting shellcode into .dll’s is cool
● SuperMega loader is… ok

○ Writing C to inject as shellcode into an .exe is a nice workflow to have
○ Good against file based scanning
○ Not a super special new anti EDR or memory scanning
○ But difficult of being AV sig’ed

● RWX reuse maybe better against memory analysis tools
● Need framework for loader-chaining



Loader My First and Last Shellcode Loader

My First Shellcode Loader
● Using Linux exploit development know-how
● Learning a lot about Windows

My Last Shellcode Loader
● Works forever
● Debugging sucks



Loader

More details:
https://blog.deeb.ch/posts/how-edr-works
https://blog.deeb.ch/posts/exe-injection
https://blog.deeb.ch/posts/supermega

SuperMega Loader:
https://github.com/dobin/SuperMega

Soon:
https://github.com/dobin/RedEdr

Stuff

https://blog.deeb.ch/posts/how-edr-works
https://blog.deeb.ch/posts/exe-injection
https://blog.deeb.ch/posts/supermega
https://github.com/dobin/SuperMega
https://github.com/dobin/RedEdr


Loader References

Matt Hand - Evading EDR
https://github.com/hasherezade/masm_shc
From a C project through assembly, to shellcode
https://www.elastic.co/security-labs
https://github.com/mgeeky/ProtectMyTooling/blob/master/
RedBackdoorer.py

https://github.com/hasherezade/masm_shc
https://samples.vx-underground.org/Papers/Windows/Analysis%20and%20Internals/2020-10-11%20-%20From%20a%20C%20project%20through%20assembly%20to%20shellcode.pdf
https://www.elastic.co/security-labs
https://github.com/mgeeky/ProtectMyTooling/blob/master/RedBackdoorer.py
https://github.com/mgeeky/ProtectMyTooling/blob/master/RedBackdoorer.py


Additoinal Loader Tricks



Loader Self Stomping

● Inject dll in .text (pre-loaded, encrypted)
● Fixup:

○ RW it (part of .text)
○ Decrypt, apply reloc’s etc.
○ RX it again

● Result: DLL in modified .text
○ Backed memory region

.text
SuperMega

Loader

Payload DLL
Encrypted

.text
SuperMega

Loader

Payload DLL



Loader Undersized alloc trick

VirtualProtect sets the permission of the page(s) (4kb)
Use size=1, get the other 4095 bytes for free
EDR will only scan 1 byte?

// Use size 1, still change all the page
VirtualProtect(shellcode_rw, 1, RX)



Loader

● UPX has RWX sections
○ Obfuscate payload with Shikata ga nai obfuscator

UPX as EXE



Loader Advanced C2

Loader CobaltStrike
“Stub”

CobaltStrike
Backend

CobaltStrike
Caller

CobaltStrike 4.10

Proposal


