
badUSB attacks on
macOS: beyond using
the terminal and shell
commands

Nicolas BUZY-DEBAT
Red Team Lead at Grab

COMMSEC TRACK 30 AUG

What are badUSB attacks?

What are badUSB attacks?

● Use of a specialized USB device (e.g.
Rubber Ducky, Flipper Zero), seen as a
Human Interface Device (HID)

● Instructions stored on the device,
written in a specific language (e.g.
DuckyScript)

● The script essentially sends a series of
keystrokes

https://docs.flipper.net/bad-usb

https://docs.flipper.net/bad-usb

● A lot of features are accessible via keyboard
shortcuts

● Task Manager, File Explorer, etc.

● The Run dialog. It can run any binary with
arguments
○ cmd.exe (/c for specifying the command)
○ powershell.exe (-Command for

specifying the command; the hidden
window parameter is also very useful)

badUSB attacks
on Windows

macOS “protection” features

Keyboard Setup
Assistant
● Triggers when plugging a non-Apple keyboard into a

Mac

● It is identified as such using the advertised device ID

● We can advertise an Apple device ID instead
○ Search for a device ID of an Apple USB keyboard

on sites like devicehunt or the Linux USB project
under vendor ID 05AC

● In a FlipperZero badUSB script, we can spoof it this
way:
○ ID 05ac:021e Apple:Keyboard

https://devicehunt.com/view/type/usb/vendor/05AC
http://www.linux-usb.org/usb.ids

New USB device
approval (Apple Silicon only)
● Triggers when you first plug a new USB/Thunderbolt device

into your MacBook

● Initially aimed at addressing the “evil airport charging
station” scenario
○ Allow: the accessory allows both power and data

transmission
○ Don’t Allow: the accessory can still charge, but no

data is transmitted

● You’re already within physical proximity, so just press
“Return” on the keyboard 🙂

https://support.apple.com/en-sg/guide/mac-help/mchlf779ae93/mac

https://support.apple.com/en-sg/guide/mac-help/mchlf779ae93/mac

Common examples on macOS
and their pitfalls

Spotlight Search

● Spotlight “help(s) you quickly find apps,
documents, emails and other items on your Mac”

● We can invoke it from the keyboard using ⌘ +
SPACE

● Can only be used to execute apps only, without
arguments. Not a 1to1 equivalent to Windows’ Run
dialog 😣

https://support.apple.com/en-sg/guide/mac-help/mchlp1008/14.0/mac/14.0

https://support.apple.com/en-sg/guide/mac-help/mchlp1008/14.0/mac/14.0

Common macOS
FlipperZero badUSB scripts
● Examples online always follow this pattern

● Spotlight search > open Terminal > type shell
command

● Optionally removes entries from the shell
history, or use a leading space
○ This won’t defeat an EDR recording

process executions

https://hackernoon.com/how-to-get-a-reverse-shell-on-macos-using-a-flipper-zero-as-a-badusb
https://github.com/narstybits/MacOS-DuckyScripts

https://hackernoon.com/how-to-get-a-reverse-shell-on-macos-using-a-flipper-zero-as-a-badusb
https://github.com/narstybits/MacOS-DuckyScripts

Does it work in a
real-life scenario?
● It works well if the victim does not use their terminal as part of their job

○ Likely OK for graphic designers ✅
○ Likely not for engineers ❌

● Opening the terminal from Spotlight search will switch the focus to an already-running
instance of the application (if any)
○ There could be a long-running command executed by the victim in it, which your

badUSB attack might interfere with
○ Closing an existing tab and/or the Terminal window might draw suspicion
○ You could open a new tab, but how do you know if a Terminal window was opened in

the first place?

● You may get lucky if they use a third-party Terminal application, e.g. iTerm2

Abusing the Script Editor &
Apple scripting languages

The Script Editor
application
● Apple application present on macOS by default

● “Script Editor lets you create powerful scripts, tools
and even apps.
You can create scripts to perform repetitive tasks,
automate complex workflows, and control apps or
even the system.”

● You can write your scripts in AppleScript or
JavaScript for Automation (JXA)

https://support.apple.com/en-sg/guide/script-editor/scpedt6935/mac

https://support.apple.com/en-sg/guide/script-editor/scpedt6935/mac

Apple Scripting =>
Objective-C Bridging
● AppleScript/JXA native functions are rather limited

● We can use their Objective-C bridge features
○ “enable you to write scripts that use scripting terminology to interact with

Objective-C frameworks, such as Foundation and AppKit”

● A significant amount of macOS tradecraft out there uses JXA that leverages that bridge.
We could reuse these 🎉

● AppleScript is the default language in the Script Editor, so we have to stick to it 🥲
○ At least for now 😏

https://developer.apple.com/library/archive/documentation/LanguagesUtilities/Conceptual/MacAutomationScriptingGuide/HowMacScriptingWorks.html

https://developer.apple.com/library/archive/documentation/LanguagesUtilities/Conceptual/MacAutomationScriptingGuide/HowMacScriptingWorks.html

Create an
AppleScript loader
● We want to “type” as little as possible

○ Potentially faster to load a remote
script instead

○ The less there is non-human induced
typing on the screen, the better

● We can create an AppleScript loader
○ The payload will be remotely fetched

and executed
○ We can modify our payload regularly

without changing our loader, and thus
the FlipperZero badUSB script

Load JXA from
AppleScript
● Remember that there are plenty of JXA examples

for Red Teaming online?

● Let’s execute JXA from AppleScript!

● When using run script, we can specify the
language

● The JavaScript value corresponds to JXA here

Download our
malware

● We want to download our malware
without invoking e.g. cURL

● We can leverage NSURL and NSData
classes

https://developer.apple.com/documentation/foundation/nsdata?language=objc
https://developer.apple.com/documentation/foundation/nsurl?language=objc

https://developer.apple.com/documentation/foundation/nsdata?language=objc
https://developer.apple.com/documentation/foundation/nsurl?language=objc

Make our malware
binary executable

● If our malware is a binary (e.g. Golang, Rust),
we need to make it executable

● Tried to create a “chmod +x” function in
AppleScript, ran into some issues, got lazy

● Already implemented in JXA in the
PersistentJXA Github project

● We’ve shown how to execute JXA from
AppleScript, so let’s do that

https://github.com/D00MFist/PersistentJXA/

https://github.com/D00MFist/PersistentJXA/

Create a LaunchAgent

● Create the final plist contents based
on the supplied service name and
payload path

● Creates the ~/Library/LaunchAgents
folder if it does not exist yet
(default)

● Writes the plist file to the user’s
LaunchAgents folder

Execute our malware
binary

● We execute the malware by creating and
launching an NSTask pointing to our binary

● We can do this to avoid usual commands
to start the agent, e.g.
○ launchctl load -w <path/agent.plist>

● Caveat: our callback may die and will only
be revived at the next startup
○ We can’t leverage the KeepAlive

until our victim restarts

https://developer.apple.com/documentation/foundation/nstask

https://developer.apple.com/documentation/foundation/nstask

Exit the Script Editor

● After the script finishes its execution, we need to
close the editor

● We want to press the “Delete” button using
keystrokes only

● The right shortcut is ⌘ + delete…

● …but invoking the shortcut from our badUSB
script did not work! 😮

Let’s check what key
it actually is…

Final FlipperZero
badUSB script

Video

https://docs.google.com/file/d/1HxL63hDPht5fRG9gsGZSvYyg2VNHZ1UF/preview

Defense opportunities

Detect use of the
Script Editor
● Process execution (ES_EVENT_TYPE_NOTIFY_EXEC) details

○ Process name: Script Editor
○ Process path: /System/Applications/Utilities/Script

Editor.app/Contents/MacOS/Script Editor
○ Process signing ID: com.apple.ScriptEditor2

● Is it actually (legitimately) used within your organization?

● Detection may lead to a lot of false positives
○ E.g. first-time Mac user who clicks around to discover the OS and opens the

application

● Can consider restricting the application for most users e.g. using an enterprise device
management solution

Suspicious events

The following events that originate from the Script Editor process:

● Process execution events (ES_EVENT_TYPE_NOTIFY_EXEC) of e.g. ad-hoc signed binaries

● File creation event (ES_EVENT_TYPE_NOTIFY_CREATE) leading to the creation of the
user’s LaunchAgents folder

● File creation event (ES_EVENT_TYPE_NOTIFY_CREATE) within the user’s LaunchAgents
folder or other known persistence locations

Mitigate the
Spotlight vector 😈
● All the examples shown use

Spotlight search at the
beginning via ⌘ + SPACE

● What if we modify the
shortcut? 🙂

THANK YOU

