

HTTPS://CONFERENCE.HITB.ORG/HITBSECCONF2024BKK

Yes, I Am Human: Breaking Fake Voice Detection with Speaker-Irrelative Features

Xuan Hai, Xin Liu*, Yuan Tan, Song Li Lanzhou University & Zhejiang University

Xuan Hai and Xin Liu contributed equally to this research.

 \oplus

commsec track

Contents What's the fake voice? 01 02 **Research status** 03 How did I do it 04 **Evaluation** 05 **Detectors vulnerability analysis** 06 Summary

What's the fake voice?

Fake Voice Generation

Al-synthesis speech → Novel approach Voice conversion → Most dangerous approach Commonly used for fraud, customer service, and authorization bypass

History of Speech Synthesis

- Old Days (Before 20th Century)
 - Requires dedicated hardware assistance
 - Very poor coherence and easy to detect
- "Jigsaw Era" (Before 2010) 🛛 📢
 - Automatic "unit selection"
 - Audible glitches in the output

- Al-synthesized speeches (Since 2010)

- 48

- Smooth and natural
- Difficult to detect

Existing Detection System

- Traditional features-based approach
 - Convert speech data to traditional speech features (MFCC, LFCC, ...)
 - ResNet (2019, EER = 6.02%)
- Computer vision (CV)-based approach
 - Convert voice to image

- Deep4SNet (2021, ACC > 98%)
- End-to-End (E2E)-based approach
 - Most of recent approaches are E2E-based
 - Aasist (2022, EER = 0.89%)
- Neural Network Feature (NNF)-based approaches

• DeepSonar (SOTA , 2020, EER = 0.02%)

#HIT82024E

All existing approaches are reported very promising performance, but is it really so?

Speaker-irrelative Features that should NOT be used to determine "human or not"

- Meaningless Silence: before and after the human voice
- Background Noise: current sound, wind, and so on

Our previous work in Black Hat USA 2022

Slight denoise

- ALL existing approaches are significantly affected by background noise
- This means that the noise of human recordings may help fake voices bypass the detection of existing approaches.

Diff*

 Compared with original baseline results

Approach	Baseline	DN-FPR	Diff *
	English	75.09%	↑ 10.92%
Fana ei ai.	Mandarin	84.37%	↑ 85.88%
	English	59.85%	↓ 10.15%
Deep43Net	Mandarin	99.37%	↑ 9.26%
	English	97.22%	↑ 2.95%
Kawnet2	Mandarin	55.74%	↑ 16.86%

Our previous work in Black Hat USA 2022

Silence remove

- ALL existing approaches are significantly affected by meaningless silence
- This means that the silence part of human recordings may help fake voices bypass the detection of existing approaches.

Diff*

 Compared with original baseline results

Approach	Baseline	SR-FPR	Diff *
Farid et al.	Mandarin	58.97%	↑ 29.92%
Deep4SNet	Mandarin	38.76%	↓ 38.76%
RawNet2	Mandarin	30.55%	↑ 30.55%

Adversarial Attack

Deceive target into producing an inaccurate output

- Adversarial attack happen because of the excessive linearity in the systems
- Add perturbation into raw sample to generate adversarial sample

Types of adversarial attack

- White-box attack: complete access to target model
- Black-box attack: no parameters information

Overview

• Target model

- O Detection model to attack
- Perturbation generator
 - O A normal distribution sampler
 - O generate attack perturbation based on attack parameters

- Parameter updater
 - O Compute mean update vector based on output of target
 - O Generate other update vector based on update condition

Optimization Goal

• Given a fake voice sample x, a detection system F(x)

O Obejective: search a adversarial sample x', let F(x') = real

 \bigcirc Define a small region S :

$$S:S_p(x) = x': |x' - x| < \tau$$

O We define:

• f(x'): the loss function to reflects the quality of adversarial samples

• $\pi_s(x'|\theta)$: a probability density function with support defined on S

Optimization Goal

• The optimization objective is :

$$J\min_{\theta} J(\theta) = \int f(x') \pi_{S}(x'|\theta) dx'$$

Attack Features

- We choose two attack features
 - O Meaningless silence before and after speakers' vocie
 - O Background noise
- We define:

- μ : Mean value of the background noise perturbation in our attack
- σ : Standard deviation of background noise perturbation
- *l_t*: Duration of meaningless silence

Target Model

- The detection model we will attack
 - O Most of detection models can output probability information
 - O Some of them just output the final judgement

Perturbation Generator

- It generates n samples according to the following steps
 - O Update parameters if an update vector is avaliale
 - Draw $\varepsilon \sim N(\mu, \sigma)$, $dim(\epsilon) = dim(x)$
 - $\bigcirc \quad \text{Draw } \epsilon_t \sim N(\mu, \sigma), \ dim(\epsilon_t) = dim(l_t)$
 - Compute $x' = clip(\epsilon + x)$

○ Return adversarial sample $x' = concatenate(\epsilon_t, x, \epsilon_t)$

$$clip(\delta) = \begin{cases} \delta, \delta \leq 1\\ 1, \delta > 1 \end{cases}$$

Parameter Updater

- Paramter updater calculates the update vector based on the adversarial samples score
 - O Compute loss for every adversarial sample based on output score of the target
 - We define the loss of i-th sample as f_i
 - Normalize the loss as z_i (calculate z-score)
 - compute the mean update vector : $\mu_{t+1} \leftarrow \mu_t \frac{\eta}{n\sigma} \sum_{i=1}^n z_i$
 - compute other parameters vector

Parameter Updater

- The detail of parameter update method
 - O pass rate:

 $pass \ rate = \frac{numbers \ of \ success \ attack \ samples}{numbers \ of \ all \ samples}$

Parameter	Update condition	value
noise mean μ	Every iteration Other parameters update	$\mu_{t+1} \leftarrow \mu_t - \frac{\eta}{n\sigma} \sum_{i=1}^n z_i \mid \mu = \mu_0$
noise standard deviation σ	(iteration number of success rate = 0%) > 3	standard deviation step size (a constant associated with σ)
time perturbation duration l_t	(number of modify σ) > 2 and success rate = 0%)	time perturbation step size (a constant associated with l_t)

A Demo

• Time-domain spectrums of raw speech and adversarial samples

П

- Adversarial samples against different detection models
- O The part within the red box is the time perturbation

Our previous work in Black Hat USA 2022

• Compared with SiF-DeepVC

system feature	SiF-DeepVC	SiFDetectCracker
SiFs selection	Human voice removing high frequency parts	High frequency background noise mute parts before and after the speaker's voice
SiFs generation	Extract from human voice	Generate based on attack parameter
running speed	Real-time	Slow
success rate	Low	High

Dataset and Target

Dataset	Target selection
AcySpect 2019 evoluction subset is used in	Deep4SNet: A representative cv-based detection system
 AsvSpoor 2019 evaluation subset is used in evaluation We filtered 15,845 samples from the set which is longer than 4s 195 samples generated by different algorithms are selected from the 15,845 samples as test samples SOX is used to denoised these samples before 	Rawnet2: E2E-based approach as ASVspoof 2021 baseline
	RawGAT-ST: E2E-based approach in ASVspoof 2021, EER=1.06%
evaluation	Raw-pc-darts: E2E-based approach in ASVspoof 2021, EER=1.77%

Effectiveness Evaluation

• Goal

- Evaluate the basic performance of SiFDetectCracker
- Result

- Two hundred adversarial samples were created for each test sample
- O Average success rate over 80%

Detection System	Success Rate
Deep4SNet	88.5%
Rawnet2	80.4%
RawGAT-ST	75.8%
Raw-pc-darts	84.1%
Average	82.2%

Cost Evaluation

Result

- O SiFDetectCracker is both effcient and effective
- O It can get ideal attack parameters within 10 iteration rounds for most samples

Detection System	Average Number of Iterations	Single-Round Iteration Time(s)
Deep4SNet	14.6	15.8
Rawnet2	13.9	15.6
RawGAT-ST	36.9	16.1
Raw-pc-darts	23.8	15.9
Average	22.3	15.85

Ablation Evaluation

• Goal

- O Set different group to investigate the effect of the selected SiFs
- Group

- O No time perturbation group
 - Not add time perturbation
 - Not update time length paramter
 - other conditions are same as original group
- O No noise perturbation group
 - Not add noise perturbation
 - Not update noise paramters
 - The maximum number of iterations is set to 9 to limit the length of the time perturbation

Ablation Evaluation

Result

- O Removing time perturbation or noise perturbation will significantly impact attack performance
 - Deep4SNet is more sensitive to noise perturbation and others are more sensitive to silence
 - Deep4SNet convert audio to histogram so time perturbation is no mean for it
 - Add time perturabtion only can greatly speed up attack
 - The related paramter is just one with simplers update conditions

O The combination of the two perturbations can increase the versatility of the attack

Detection	Original		No	Time Perturbation	No Noise Perturbation		
System	Succes s Rate	Average Number of Iterations	Succes s Rate	Average Number of Iterations	Success Rate	Average Number of Iterations	
Deep4SNet	88.5%	14.6	87.0%	16.6	2.0%	8.9	
Rawnet2	80.4%	13.9	19.5%	78.3	62.5%	6.6	
RawGAT-ST	75.8%	36.9	1.5%	94.4	49.7%	3.0	
Raw-pc-darts	84.1%	23.8	10.2%	87.9	70.2%	3.8	

Why existing fake voice detectors are sensitive to SiFs?

wing existing take voice detectors are sensitive to SiFs?

Retrain without SiFs

- Detectors trained by different datasets are sensitive to different SiFs
- Most detectors trained and evaluated by ASVspoof 2019

	Original		No	Time Perturbation	No Noise Perturbation		
System	Succes s Rate	es Average Number of Succ te Iterations s Ra		Succes Average Number of s Rate Iterations		Average Number of Iterations	
Deep4SNet	88.5%	14.6	87.0%	16.6	2.0%	8.9	
Rawnet2	80.4%	13.9	19.5%	78.3	62.5%	6.6	
RawGAT-ST	75.8%	36.9	1.5%	94.4	49.7%	3.0	
Raw-pc-darts	84.1%	23.8	10.2%	87.9	70.2%	3.8	

Retrain without SiFs

- Eliminate a portion of SiFs (background noise and meaningless silence)
- Retrain the detectors with processed the datasets (ASVspoof 2019)

Retrain without SiFs

- Raw Set: The ASVspoof 2019 dataset without any process
- Denoised Set: Samples of ASVspoof 2019 dataset after removing the background noise
- Silence Set: Samples of ASVspoof 2019 dataset after removing the meaningless silence before and after speaker's voice

Evaluation

Madal	Synthesis-based			Voice conversion-based			Average EER		
wouer	Raw	Denoise	Silence	Raw	Denoise	Silence	Raw	Denoise	Silence
AASIST	0.52%	0.49%	24.02%	1.85%	4.53%	3.06%	1.13%	2.50%	24.45%
RawGAT-ST	0.55%	0.7%	22.06%	1.85%	3.50%	2.41%	1.39%	2.06%	22.50%
RawNet2	2.00%	1.82%	23.74%	2.41%	9.28%	10.05%	5.49%	5.97%	23.64%
SAMO	0.73%	1.64%	18.40%	2.01%	3.54%	3.37%	1.10%	1.99%	18.34%
MTLISSD	0.72%	0.44%	22.88%	5.14%	17.51%	16.42%	2.58%	6.47%	23.43%
SSL	0.09%	0.14%	6.00%	0.40%	0.86%	0.37%	0.22%	0.46%	7.97%
FastAudio	0.30%	0.25%	18.03%	2.94%	3.39%	8.14%	1.78%	2.30%	19.70%

Ŧ

Evaluation

- All of detectors are sensitive to meaningless silence
- The meaningless silence has a more significant impact on the detection of synthesis-based samples.

Meaningless Silence

• We compared the average duration of samples in raw set and silence set

• The difference in duration represents

the difference in meaningless silence

Meaningless Silence

 Real samples and voice conversion based samples (A05-A06, A17-A19) have similar difference in duration

 The meaningless silence duration of synthesis based samples (A01-A04, A07-A16) is shorter

Analysis

- Models trained by ASVspoof 2019 can easily distinguish the fake speech by the difference of duration in meaningless silence.
 - O These models can be tricked by adding meaningless silence
 - O Existing models do not learn the essential difference between real and fake speech
 - O Other SiFs may have similar effects that interfere with detectors learning the essential difference between real and fake speech

SiFDetectCracker: Live demo

Let's try it now

	-mat	و بر المربي المربع الم					n 4
	-x0 === 10 #Acc						
	The second s	16name	👄 'main'				
	🗯 II.a -	for fn	me in test_set_lis				
_		th	eshold = np abs(at)	tack_config "threshold	["]"np.mesn(new_audio))		
•		th	reshold_n = attack_	config["threshold_n"]"	np linalg norm(new_audio)		
		1	len = int(mextattad	c_config "t_len" 0	en new_audio), sr*attack_config(*t_1	len" 1 })	
		th	eshold_t = attack_	config["threshold_t"]'	se		
		st	tacker set param(1r	population, mu, sign	n, tigna stap tize, t_stap size, t_)	leo,	
			th	eshold, threshold n.	threshold t)		
		at	lacker set fake sam	ple(new audio, fneme,s	plit('.')[0], perturbation seed)		
		if	attack config["is	initial"]:			
			attacker initiali	e sample()			
		it	ration, ave time d	otifnamel = attacker.	parem search(num iteration, tmp save	e path_model. target	
			s rate dict[fname]	- attacker evaluate(wal convlation path config "save pa	ath"] model target.	
			s rate dict[fname]	anneod(iteration)			
		r =	file write(20-0)	0 (3 (3 () ())n' form	atifoame soliti' (100		
		-			mass cate dict fname [8]		
					man wate dict frame [7]		
					pace rate dist frame [2]		
					pass_race_are. reame [2],		
		Gitth demaî 🚽 alay	mlahs mi 🛙				
	Statistic sectors 1						
	0						
	ter and the second seco						
	1.00						
	gillek						
-	Normal Contemport						
	0 #	A 🚓 🐂 🚓 V	n 👘 💿 📅 🕅				19:31
-		· · · · · · ·	1 👻 🛒 👯 👯				2024 18 24 4

Takeaways

- Al-synthesized speeches generation and detection
 - O How to generate AI-synthesized speeches
 - O Existing detection approaches and their problems
- A novel adversarial attack approach——SiFDetectCracker
 - O An attack framework based on SiFs
- An analysis of velnerability in ASVspoof 2019
 - O Exisiting works may not capture essential features of fake voice

Demos

- We deeply understand the importance of reproducibility
- All code of this project is available on GitHub
 - O Deep4SNet: https://github.com/yohannarodriguez/Deep4SNet
 - O Rawnet2: https://github.com/eurecom-asp/rawnet2-antispoofing
 - O RawGAT-ST: https://github.com/eurecom-asp/RawGAT-ST-antispoofing
 - O Raw-pc-darts: https://github.com/eurecom-asp/raw-pc-darts-anti-spoofing
 - O SiFDetectCracker: https://github.com/ORamblerO/SiFDetectCracker
- ASVSpoof 2019 dataset used in evaluation is also available to the public
 - O Link: https://www.kaggle.com/datasets/awsaf49/asvpoof-2019-dataset

Thanks!

Do you have any questions? bird@lzu.edu.cn haix21@lzu.edu.cn

