
HITB Lockdown, April 25th, 2020

Building Next-Gen Security Analysis Tools

With Qiling Framework

NGUYEN Anh Quynh, aquynh -at- gmail.com

KaiJern LAU, kj -at- qiling.io

TianZe DING, dliv3 -at- gmail.com

BoWen SUN, w1tcher.bupt -at- gmail.com

huitao, CHEN null -at- qiling.io

twitter: @qiling_io https://qiling.io
Tong YU, spikeinhouse -at- gmail.com

Simone Berni, simone.berni2 -at- studio.unibo.it

About xwings

Electronic fan boy, making

toys from hacker to hacker

hackersbadge.com

> Reversing Binary

> Reversing IoT Devices

> Part Time CtF player

Cross platform and multi

architecture advanced binary

emulation framework

Qiling Framework

> https://qiling.io

> Lead Developer

> Founder

> 2005, HITB CTF, Malaysia, First Place /w 20+ Intl. Team

> 2010, Hack In The Box, Malaysia, Speaker

> 2012, Codegate, Korean, Speaker

> 2015, VXRL, Hong Kong, Speaker

> 2015, HITCON Pre Qual, Taiwan, Top 10 /w 4K+ Intl. Team

> 2016, Codegate PreQual, Korean, Top 5 /w 3K+ Intl. Team

> 2016, Qcon, Beijing, Speaker

> 2016, Kcon, Beijing, Speaker

> 2017, Kcon, Beijing, Trainer

Hoping making the world a

better place

JD.COM

JD Security

> Lab Director / Founder

> Blockchain Research

> IoT Research

> 2018, KCON, Beijing, Trainer

> 2018, Brucon, Brussel, Speaker

> 2018, H2HC, San Paolo, Brazil, Speaker

> 2018, HITB, Beijing/Dubai, Speaker

> 2018, beVX, Hong Kong, Speaker

> 2019, Defcon 27, Las Vegas, Speaker

> 2019, HITCON, Taiwan, Speaker

> 2019, Zeronight, Russia, Speaker

> MacOS SMC, Buffer Overflow, suid

> GDB, PE File Parser Buffer Overflow

> Metasploit Module, Snort Back Oriffice

> Linux ASLR bypass, Return to EDX

About Dliv3/w1tcher/Null/Sp1ke/

Rest of the team members are from theshepherdlab , Dubhe CTF team & community

About NGUYEN Anh Quynh

> Nanyang Technological University, Singapore

> PhD in Computer Science

> Operating System, Virtual Machine, Binary analysis, etc

> Usenix, ACM, IEEE, LNCS, etc

> Blackhat USA/EU/Asia, DEFCON, Recon, HackInTheBox,

Syscan, etc

> Capstone disassembler: http://capstone-engine.org

> Unicorn emulator: http://unicorn-engine.org

> Keystone assembler: http://keystone-engine.org

Agenda

Motivation

Shellcode emulation

Qiling framework

Design & implementation

Build dynamic analysis tools on top of Qiling Framework

Demo

Conclusion

Star u
s

Unicorn Emulator framework

Multi-architectures: Arm, Arm64, M68K, Mips, Sparc, & X86 (include X86_64)

Native support for Windows & *nix (with Mac OSX, Linux, *BSD & Solaris confirmed)

Clean/simple/lightweight/intuitive architecture-neutral API

Implemented in pure C language, with multiple bindings

High performance by using Just-In-Time compiler technique

Support fine-grained instrumentation at various levels

Just emulator for low level instructions + memory access

No higher level concepts of Operating System

File format

Library

Filesystem

Systemcall

OS structures

Limitation

How Qiling Got Started

Everything From Executing Shellcode

Smash Input

Program Crash

Craft Payload

Control Execution Flow

Payload Execution

Full Control

Full
Control

PayloadExploitation
Memory

Corruption

Traditional Shellcode vs Modern Payload

More Complex

Harder to detect

Designed to bypass detection

Detection can be

Network

System/OS level

Possible Solution(s)

usercorn

Very good project !

Mostly *nix based only

Limited OS Support

Go and Lua is not hacker’s friendly

Syscall forwarding

What is Required

MIPS ARM AARCH64 X86

*BSD Linux MacOS Windows

Debugger or Disassembler

Why Unicorn

More Emulate = Higher Chances Being Detected

Over

Emulate

Making A Good “Hackable Shellcode Emulator”

You Need to Be a ASSEMBLER

Each Good for Different ARCH

Each Good for Different Platform

Only Able to Use in Limited Platform

Steep Leaving Curve

Too Complicated To Choose From

Each Good for Different ARCH

Each Good for Different Platform

Only Able to Use in Limited Platform

Steep Leaving Curve

Too Complicated to Pick One

Too Debugger Oriented

Limited Option have with Assembler and Debugger

Normally only a Helping Script / IDAPython

Limited Function

Qiling{JiuWei}

pre-processing

binary

asm

hex as file

hex as argv INJECT

INJECT

executive
emu

emu

dump

arm/x86/mips

Linux/MacOS/Windows/BSD

Execution /w

Kernel emulation

Lightweight, Automated, High Performance and Scalable Platform

In Action

Linux AARCH 64

AARCH64 Reverse TCP Shellcode

Linux x86_32 input as ASM

Debug and Quiet Mode with HEX, Binary and ASM Input

Running a Windows Shellcode

Calling calc.exe

Qiling Framework

The ACTUAL TALK

Features

Cross platform: Windows, MacOS, Linux, BSD

Cross architecture: X86, X86_64, Arm, Arm64, Mips

Multiple file formats: PE, MachO, ELF

Emulate & sandbox machine code in a isolated environment

Provide high level API to setup & configure the sandbox

Fine-grain instrumentation: allow hooks at various levels (instruction/basic-block/memory-
access/exception/syscall/IO/etc)

Allow dynamic hotpatch on-the-fly running code, including the loaded library

True Python framework, making it easy to build customized analysis tools on top

Full GDB/IDA/r2 Support

OS profiling support

User Mode Emulation

qemu-usermode

The TOOL

Limited OS Support, Very Limited

No Multi OS Support

No Instrumentation

Syscall Forwarding

usercorn

Very good project !

It’s a Framework !

Mostly *nix based only

Limited OS Support (No Windows)

Go and Lua is not hacker’s friendly

Syscall Forwarding

WINE

Limited ARCH Support

Limited OS Support, only Windows

Not Sandbox Designed

No Instrumentation

WSL/2

Limited ARCH Support

Only Linux and run in Windows

Not Sandboxed, It linked to /mnt/c

No Instrumentation (maybe)

Binee

Very good project too

Only X86 (32 and 64)

Limited OS Support (No *NIX)

Just a tool, we don’t need a tool

Again, is GO

Zelos

Very good project !

It’s a Framework !

Linux based only (No Windows)

Incomplete support for Linux multi
arch

Syscall Forwarding

User Mode Emulation

qemu-usermode

Over Emulate

The TOOL

Limited OS Support, Very Limited

No Multi OS Support

No Instrumentation

Syscall Forwarding

usercorn

Very good project !

It’s a Framework !

Mostly *nix based only

Limited OS Support (No Windows)

Go and Lua is not hacker’s friendly

Syscall Forwarding

How Qiling Works

How Does It Work

Loader and

Setup

PE

ELF

MACHO

PE32+ Loader

Loader

post processemu

emu

result

API / Syscall

Posix/OSX/Windows

Instrumentation

Base OS can be Windows/Linux/BSD or OSX

And not limited to ARCH

OS Adventure

Loader

Parse != Loader

ELF Loader

PE Loader

MACHO Loader

Posix Series - Syscall Emulator

Syscall almost the same for OSX/Linux/*BSD

Kernel Programming 101

Emulate Syscall

Skip/Forward or Emulate Code

Prepare Execution Report

Syscall Implementation

Windows Emulator 0x1

Setup TEB Structure

Setup PEB Structure

Setup PEB_LDR_DATA Structure

Windows Emulator 0x2

Sample Code on How To Execute X86_32/64bit Windows Shellcode

Parse DLL & Get All Export Functions

Hook Windows API

Setup LDR_DATA_TABLE_ENTRY for Loaded Modules

Setup Three Double Linked Lists

InMemoryOrderModuleList

InLoadOrderModuleList

InInitializationOrderList

CPU Adventure

X86 32/64 Series

X86 32bit GDT For Windows

X86 32/64bit GDT For Linux

Setup segments GDT and Set Thread Area

X86 64bit GDT For Windows

ARM/64 Series

ARM/Thumb and ARM64

Making Sure Loader is compatible

ARM MCR instruction for Set TLS

ARM Kernel Initialization

ARM and ARM64 Enable VFP

MIPS32EL Series

MIPS Comes with CO Processor

Configuration needed for CO Processor

Unicorn does not support Floating Point

Patch Unicorn to Support CO Processors

Custom Binary Injected for Set Thread Area

Applications of Qiling + Demo

Build dynamic analysis tools - Basic

Let Qiling load the binary into memory (loading + dynamic linking)

Syscall & system API logging available, provided by default

Build dynamic analysis tools – Basic ++

Let Qiling loads the binary (loading + dynamic linking)

Syscall & system API logging available, provided by default

Program callbacks with Qiling hook capabilities: hook memory access, hook address range

Repeat in a loop: run() → analysis → resume()

Firmware analysis

Emulation offers a chance to move
analysis to a much more powerful
platform

Emulate a single binary is better
than whole firmware

Hardware emulation is tough
without hardware specs

Series of different firmware can
share the same target binary

Challenges

Dump firmware, or extract
firmware from binary blob

Extract the target binary

NVRAM emulation

Dependency libraries

Presence of other devices:
wireless interface

Guided fuzzer – cross platform/architecture

Cross platform/architecture: Windows, MacOS, Linux, BSD on X86, Arm, Arm64, Mips

https://github.com/qilingframework/qiling/tree/dev/examples/fuzzing

Malware analysis

Analyze malware in Qiling sandbox

Cross-platform analysis

API logging available to summarize malware
behaviour at API level

Randomization Wrapper

Optional GDB compatible debugger

Debugger – GDB / IDAPro/ r2

Gandcrab

Ransomware

Use evasion and privilege escalation techniques

Steal and store information from the target computer

Tries to encrypt everything

Al-Khaser

PoC Malware with good intentions

Used to stress an anti-malware sandbox

Performs many malware common tricks (Anti-debugging, Anti-injection, Anti-dumping and
more)

Emulated only partially

One More Thing

Star Our Project !!!

Qiling is a Python-based lightweight emulator framework

Built-in shellcode emulator

Emulate Operating System to support full binary

Well maintained by a good team of researchers

Version 1.0 released TODAY

Come more exciting binary analysis tools built on top of Qiling!

Star u
s

Call for sponsor for development of Unicorn 2

Current Unicorn is based on Qemu 2.1.2, from 2015

Planning for Unicorn 2, based on new Qemu (5+)

Some new exciting APIs in planning

https://github.com/unicorn-engine/unicorn/issues/1217

NGUYEN Anh Quynh, aquynh -at- gmail.com, @unicorn_engine

